Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T18:46:09.061Z Has data issue: false hasContentIssue false

Compressed sensorimotor-to-transmodal hierarchical organization in schizophrenia

Published online by Cambridge University Press:  08 June 2021

Debo Dong
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
Dezhong Yao
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
Yulin Wang
Affiliation:
Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Vrije Universiteit Brussel, Belgium Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Belgium
Seok-Jun Hong
Affiliation:
Center for the Developing Brain, Child Mind Institute, NY, USA Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, South Korea
Sarah Genon
Affiliation:
Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
Fei Xin
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
Kyesam Jung
Affiliation:
Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
Hui He
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
Xuebin Chang
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
Mingjun Duan
Affiliation:
Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
Boris C. Bernhardt
Affiliation:
Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
Daniel S. Margulies
Affiliation:
Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France
Jorge Sepulcre
Affiliation:
Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
Simon B. Eickhoff
Affiliation:
Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
Cheng Luo*
Affiliation:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China Department of Neurology, Brain Disorders and Brain Function Key Laboratory, First Affiliated Hospital of Hainan Medical University, Haikou, China
*
Author for correspondence: Cheng Luo, E-mail: chengluo@uestc.edu.cn

Abstract

Background

Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks.

Methods

We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls).

Results

We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal−parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05).

Conclusions

The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory−motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, R. A., Dale, C., Fisher, M., Aldebot, S., Genevsky, A., Simpson, G. V., … Vinogradov, S. (2009). When top-down meets bottom-up: Auditory training enhances verbal memory in schizophrenia. Schizophrenia Bulletin, 35(6), 11321141. doi:10.1093/schbul/sbp068.CrossRefGoogle ScholarPubMed
Berman, R. A., Gotts, S. J., McAdams, H. M., Greenstein, D., Lalonde, F., Clasen, L., … Raznahan, A. (2016). Disrupted sensorimotor and social–cognitive networks underlie symptoms in childhood-onset schizophrenia. Brain, 139(1), 276291. doi:10.1093/brain/awv306.CrossRefGoogle ScholarPubMed
Bethlehem, R. A. I., Paquola, C., Seidlitz, J., Ronan, L., Bernhardt, B., Consortium, C.-C. A. N., & Tsvetanov, K. A. (2020). Dispersion of functional gradients across the adult lifespan. Neuroimage, 222, 117299. doi:10.1016/j.neuroimage.2020.117299.CrossRefGoogle ScholarPubMed
Biagianti, B., Fisher, M., Neilands, T. B., Loewy, R., & Vinogradov, S. (2016). Engagement with the auditory processing system during targeted auditory cognitive training mediates changes in cognitive outcomes in individuals with schizophrenia. Neuropsychology, 30(8), 9981008. doi:10.1037/neu0000311.CrossRefGoogle ScholarPubMed
Bordier, C., Nicolini, C., Forcellini, G., & Bifone, A. (2018). Disrupted modular organization of primary sensory brain areas in schizophrenia. NeuroImage: Clinical, 18, 682693. doi:10.1016/j.nicl.2018.02.035.CrossRefGoogle ScholarPubMed
Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., … Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer's disease. Journal of Neuroscience, 29(6), 18601873. doi:10.1523/JNEUROSCI.5062-08.2009.CrossRefGoogle ScholarPubMed
Burt, J. B., Demirtaş, M., Eckner, W. J., Navejar, N. M., Ji, J. L., Martin, W. J., … Murray, J. D. (2018). Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nature Neuroscience, 21(9), 12511259. doi:10.1038/s41593-018-0195-0.CrossRefGoogle ScholarPubMed
Butler, P. D., Abeles, I. Y., Weiskopf, N. G., Tambini, A., Jalbrzikowski, M., Legatt, M. E., … Javitt, D. C. (2009). Sensory contributions to impaired emotion processing in schizophrenia. Schizophrenia Bulletin, 35(6), 10951107, doi:Sensory contributions to impaired emotion processing in schizophrenia.CrossRefGoogle ScholarPubMed
Butler, P. D., Martinez, A., Foxe, J. J., Kim, D., Zemon, V., Silipo, G., … Javitt, D. C. (2007). Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain, 130(2), 417430. doi:10.1093/brain/awl233.CrossRefGoogle ScholarPubMed
Calderone, D. J., Hoptman, M. J., Martínez, A., Nair-Collins, S., Mauro, C. J., Bar, M., … Butler, P. D. (2013). Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia. Cerebral Cortex, 23(8), 18491858. doi:10.1093/cercor/bhs169.CrossRefGoogle ScholarPubMed
Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H., & Wang, X.-J. (2015). A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron, 88(2), 419431. doi:10.1016/j.neuron.2015.09.008.CrossRefGoogle ScholarPubMed
Chen, X., Duan, M., He, H., Yang, M., Klugah–Brown, B., Xu, H., … Yao, D. (2016). Functional abnormalities of the right posterior insula are related to the altered self-experience in schizophrenia. Psychiatry Research: Neuroimaging, 256, 2632. doi:10.1016/j.pscychresns.2016.09.006.CrossRefGoogle Scholar
Chen, X., Duan, M., Xie, Q., Lai, Y., Dong, L., Cao, W., … Luo, C. (2015). Functional disconnection between the visual cortex and the sensorimotor cortex suggests a potential mechanism for self-disorder in schizophrenia. Schizophrenia Research, 166(1–3), 151157. doi:10.1016/j.schres.2015.06.014.CrossRefGoogle ScholarPubMed
Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., & Zucker, S. W. (2005). Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proceedings of the National Academy of Sciences, 102(21), 74267431. doi:10.1073/pnas.0500334102.CrossRefGoogle ScholarPubMed
Dale, C. L., Brown, E. G., Fisher, M., Herman, A. B., Dowling, A. F., Hinkley, L. B., … Vinogradov, S. (2016). Auditory cortical plasticity drives training-induced cognitive changes in schizophrenia. Schizophrenia Bulletin, 42(1), 220228. doi:10.1093/schbul/sbv087.Google ScholarPubMed
Demirtaş, M., Burt, J. B., Helmer, M., Ji, J. L., Adkinson, B. D., Glasser, M. F., … Murray, J. D. (2019). Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics. Neuron, 101(6), 11811194, e1113. doi:10.1016/j.neuron.2019.01.017.CrossRefGoogle ScholarPubMed
de Wael, R. V., Benkarim, O., Paquola, C., Lariviere, S., Royer, J., Tavakol, S., … Valk, S. (2020). BrainSpace: A toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Communications Biology, 3(1), 110. doi:10.1038/s42003-020-0794-7.Google Scholar
Dias, E. C., Butler, P. D., Hoptman, M. J., & Javitt, D. C. (2011). Early sensory contributions to contextual encoding deficits in schizophrenia. Archives of General Psychiatry, 68(7), 654664. doi:10.1001/archgenpsychiatry.2011.17.CrossRefGoogle ScholarPubMed
Dima, D., Dietrich, D. E., Dillo, W., & Emrich, H. M. (2010). Impaired top-down processes in schizophrenia: A DCM study of ERPs. Neuroimage, 52(3), 824832. doi:10.1016/j.neuroimage.2009.12.086.CrossRefGoogle ScholarPubMed
Dima, D., Roiser, J. P., Dietrich, D. E., Bonnemann, C., Lanfermann, H., Emrich, H. M., & Dillo, W. (2009). Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. Neuroimage, 46(4), 11801186. doi:10.1016/j.neuroimage.2009.03.033.CrossRefGoogle Scholar
Ding, Y., Ou, Y., Pan, P., Shan, X., Chen, J., Liu, F., … Guo, W. (2019). Cerebellar structural and functional abnormalities in first-episode and drug-naive patients with schizophrenia: A meta-analysis. Psychiatry Research: Neuroimaging, 283, 2433. doi:10.1016/j.pscychresns.2018.11.009.CrossRefGoogle ScholarPubMed
Dondé, C., Avissar, M., Weber, M. M., & Javitt, D. C. (2019). A century of sensory processing dysfunction in schizophrenia. European Psychiatry, 59, 7779. doi:10.1016/j.eurpsy.2019.04.006.CrossRefGoogle ScholarPubMed
Dondé, C., Silipo, G., Dias, E. C., & Javitt, D. C. (2019). Hierarchical deficits in auditory information processing in schizophrenia. Schizophrenia Research, 206, 135141. doi:10.1016/j.schres.2018.12.001.CrossRefGoogle ScholarPubMed
Dong, D., Duan, M., Wang, Y., Zhang, X., Jia, X., Li, Y., … Luo, C. (2019). Reconfiguration of dynamic functional connectivity in sensory and perceptual system in schizophrenia. Cerebral Cortex, 29(8), 35773589. doi:10.1093/cercor/bhy232.CrossRefGoogle ScholarPubMed
Dong, D., Luo, C., Guell, X., Wang, Y., He, H., Duan, M., … Yao, D. (2020). Compression of cerebellar functional gradients in schizophrenia. Schizophrenia Bulletin, 46(5), 12821295. doi:10.1093/schbul/sbaa016.CrossRefGoogle ScholarPubMed
Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2018). Dysfunction of large-scale brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity. Schizophrenia Bulletin, 44(1), 168181. doi:10.1093/schbul/sbx034.CrossRefGoogle ScholarPubMed
Du, Y., Fryer, S. L., Lin, D., Sui, J., Yu, Q., Chen, J., … Mathalon, D. H. (2018). Identifying functional network changing patterns in individuals at clinical high-risk for psychosis and patients with early illness schizophrenia: A group ICA study. NeuroImage: Clinical, 17, 335346. doi:10.1016/j.nicl.2017.10.018.CrossRefGoogle ScholarPubMed
Duan, J., Xia, M., Womer, F. Y., Chang, M., Yin, Z., Zhou, Q., … Wang, F. (2019). Dynamic changes of functional segregation and integration in vulnerability and resilience to schizophrenia. Human Brain Mapping, 40(7), 22002211. doi:10.1002/hbm.24518.CrossRefGoogle ScholarPubMed
Elliott, M. L., Romer, A., Knodt, A. R., & Hariri, A. R. (2018). A connectome-wide functional signature of transdiagnostic risk for mental illness. Biological Psychiatry, 84(6), 452459. doi:10.1016/j.biopsych.2018.03.012.CrossRefGoogle ScholarPubMed
Fisher, M., Holland, C., Merzenich, M. M., & Vinogradov, S. (2009). Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. American Journal of Psychiatry, 166(7), 805811. doi:10.1176/appi.ajp.2009.08050757.CrossRefGoogle ScholarPubMed
Fulcher, B. D., Murray, J. D., Zerbi, V., & Wang, X.-J. (2019). Multimodal gradients across mouse cortex. Proceedings of the National Academy of Sciences, 116(10), 46894695. doi:10.1073/pnas.1814144116.CrossRefGoogle ScholarPubMed
Gong, J., Wang, J., Luo, X., Chen, G., Huang, H., Huang, R., … Wang, Y. (2020). Abnormalities of intrinsic regional brain activity in first-episode and chronic schizophrenia: A meta-analysis of resting-state functional MRI. Journal of Psychiatry & Neuroscience: JPN, 45(1), 5568. doi:10.1503/jpn.180245.CrossRefGoogle ScholarPubMed
Guell, X., Schmahmann, J. D., Gabrieli, J. D., & Ghosh, S. S. (2018). Functional gradients of the cerebellum. Elife, 7, e36652. doi:10.7554/eLife.36652.CrossRefGoogle ScholarPubMed
Guo, W., Xiao, C., Liu, G., Wooderson, S. C., Zhang, Z., Zhang, J., … Liu, J. (2014). Decreased resting-state interhemispheric coordination in first-episode, drug-naive paranoid schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 48, 1419. doi:10.1016/j.pnpbp.2013.09.012.CrossRefGoogle ScholarPubMed
Hahamy, A., Calhoun, V., Pearlson, G., Harel, M., Stern, N., Attar, F., … Salomon, R. (2014). Save the global: Global signal connectivity as a tool for studying clinical populations with functional magnetic resonance imaging. Brain Connectivity, 4(6), 395403. doi:10.1089/brain.2014.0244.CrossRefGoogle ScholarPubMed
Hakak, Y., Walker, J. R., Li, C., Wong, W. H., Davis, K. L., Buxbaum, J. D., … Fienberg, A. A. (2001). Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proceedings of the National Academy of Sciences, 98(8), 47464751. doi:10.1073/pnas.081071198.CrossRefGoogle ScholarPubMed
He, H., Yang, M., Duan, M., Chen, X., Lai, Y., Xia, Y., … Yao, D. (2018). Music intervention leads to increased insular connectivity and improved clinical symptoms in schizophrenia. Frontiers in Neuroscience, 11, 744744. doi:10.3389/fnins.2017.00744.CrossRefGoogle ScholarPubMed
Hochberger, W. C., Joshi, Y. B., Thomas, M. L., Zhang, W., Bismark, A. W., Treichler, E. B., … Cardoso, L. (2019). Neurophysiologic measures of target engagement predict response to auditory-based cognitive training in treatment refractory schizophrenia. Neuropsychopharmacology, 44(3), 606612. doi:10.1038/s41386-018-0256-9.CrossRefGoogle ScholarPubMed
Hong, S.-J., De Wael, R. V., Bethlehem, R. A., Lariviere, S., Paquola, C., Valk, S. L., … Smallwood, J. (2019). Atypical functional connectome hierarchy in autism. Nature Communications, 10(1), 113. doi:10.1038/s41467-019-08944-1.CrossRefGoogle ScholarPubMed
Hoptman, M. J., Parker, E. M., Nair-Collins, S., Dias, E. C., Ross, M. E., DiCostanzo, J. N., … Javitt, D. C. (2018). Sensory and cross-network contributions to response inhibition in patients with schizophrenia. NeuroImage: Clinical, 18, 3139. doi:10.1016/j.nicl.2018.01.001.CrossRefGoogle ScholarPubMed
Hugdahl, K. (2009). “Hearing voices”: Auditory hallucinations as failure of top-down control of bottom-up perceptual processes. Scandinavian Journal of Psychology, 50(6), 553560. doi:10.1111/j.1467-9450.2009.00775.x.CrossRefGoogle ScholarPubMed
Huntenburg, J. M., Bazin, P.-L., & Margulies, D. S. (2018). Large-scale gradients in human cortical organization. Trends in Cognitive Sciences, 22(1), 2131. doi:10.1016/j.tics.2017.11.002.CrossRefGoogle ScholarPubMed
Javitt, D. C. (2009a). Sensory processing in schizophrenia: Neither simple nor intact. Schizophrenia Bulletin, 35(6), 10591064. doi:10.1093/schbul/sbp110.CrossRefGoogle ScholarPubMed
Javitt, D. C. (2009b). When doors of perception close: Bottom-up models of disrupted cognition in schizophrenia. Annual Review of Clinical Psychology, 5, 249275. doi:10.1146/annurev.clinpsy.032408.153502.CrossRefGoogle ScholarPubMed
Javitt, D. C., & Freedman, R. (2015). Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. American Journal of Psychiatry, 172(1), 1731. doi:10.1176/appi.ajp.2014.13121691.CrossRefGoogle ScholarPubMed
Javitt, D. C., & Sweet, R. A. (2015). Auditory dysfunction in schizophrenia: Integrating clinical and basic features. Nature Reviews Neuroscience, 16(9), 535550. doi:10.1038/nrn4002.CrossRefGoogle ScholarPubMed
Jiang, Y., Duan, M., Chen, X., Zhang, X., Gong, J., Dong, D., … Wang, J. (2019). Aberrant prefrontal–thalamic–cerebellar circuit in schizophrenia and depression: Evidence from a possible causal connectivity. International Journal of Neural Systems, 29(05), 1850032. doi:10.1142/S0129065718500326.CrossRefGoogle ScholarPubMed
Jiang, L., Xu, Y., Zhu, X., Yang, Z., Li, H., & Zuo, X. (2015). Local-to-remote cortical connectivity in early- and adulthood-onset schizophrenia. Translational Psychiatry, 5(5), e566e566. doi:10.1038/tp.2015.59.CrossRefGoogle ScholarPubMed
Jørgensen, K., Nerland, S., Norbom, L., Doan, N., Nesvåg, R., Mørch-Johnsen, L., … Westlye, L. (2016). Increased MRI-based cortical grey/white-matter contrast in sensory and motor regions in schizophrenia and bipolar disorder. Psychological Medicine, 46(9), 19711985. doi:10.1017/S0033291716000593.CrossRefGoogle ScholarPubMed
Karoutzou, G., Emrich, H. M., & Dietrich, D. E. (2008). The myelin-pathogenesis puzzle in schizophrenia: A literature review. Molecular Psychiatry, 13(3), 245260. doi:10.1038/sj.mp.4002096.CrossRefGoogle ScholarPubMed
Kaufmann, T., Skåtun, K. C., Alnæs, D., Doan, N. T., Duff, E. P., Tønnesen, S., … Lagerberg, T. V. (2015). Disintegration of sensorimotor brain networks in schizophrenia. Schizophrenia Bulletin, 41(6), 13261335. doi:10.1093/schbul/sbv060.CrossRefGoogle ScholarPubMed
Kebets, V., Holmes, A. J., Orban, C., Tang, S., Li, J., Sun, N., … Yeo, B. T. (2019). Somatosensory-motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology. Biological Psychiatry, 86(10), 779791. doi:10.1016/j.biopsych.2019.06.013.CrossRefGoogle ScholarPubMed
Langs, G., Golland, P., & Ghosh, S. S. (2015). Predicting activation across individuals with resting-state functional connectivity based multi-atlas label fusion. Paper presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention.CrossRefGoogle Scholar
Leitman, D. I., Sehatpour, P., Higgins, B. A., Foxe, J. J., Silipo, G., & Javitt, D. C. (2010). Sensory deficits and distributed hierarchical dysfunction in schizophrenia. American Journal of Psychiatry, 167(7), 818827. doi:10.1176/appi.ajp.2010.09030338.CrossRefGoogle ScholarPubMed
Liao, W., Fan, Y.-S., Yang, S., Li, J., Duan, X., Cui, Q., & Chen, H. (2019). Preservation effect: Cigarette smoking acts on the dynamic of influences among unifying neuropsychiatric triple networks in schizophrenia. Schizophrenia Bulletin, 45(6), 12421250. doi:10.1093/schbul/sby184.CrossRefGoogle ScholarPubMed
Liu, Y., Guo, W., Zhang, Y., Lv, L., Hu, F., Wu, R., & Zhao, J. (2018). Decreased resting-state interhemispheric functional connectivity correlated with neurocognitive deficits in drug-naive first-episode adolescent-onset schizophrenia. International Journal of Neuropsychopharmacology, 21(1), 3341. doi:10.1093/ijnp/pyx095.CrossRefGoogle ScholarPubMed
Luo, Y., He, H., Duan, M., Huang, H., Hu, Z., Wang, H., … Luo, C. (2020). Dynamic functional connectivity strength within different frequency-band in schizophrenia. Frontiers in Psychiatry, 10, Article No. 995. doi:10.3389/fpsyt.2019.00995.CrossRefGoogle ScholarPubMed
Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. M., Langs, G., … Petrides, M. (2016). Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceedings of the National Academy of Sciences, 113(44), 1257412579. doi:10.1073/pnas.1608282113.CrossRefGoogle ScholarPubMed
Martínez, K., Martínez-García, M., Marcos-Vidal, L., Janssen, J., Castellanos, F. X., Pretus, C., … Carmona, S. (2020). Sensory-to-Cognitive systems integration is associated with clinical severity in autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 59(3), 422433. doi:10.1016/j.jaac.2019.05.033.CrossRefGoogle ScholarPubMed
Mesulam, M. (2012). The evolving landscape of human cortical connectivity: Facts and inferences. Neuroimage, 62(4), 21822189. doi:10.1016/j.neuroimage.2011.12.033.CrossRefGoogle ScholarPubMed
Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811822. doi:10.1001/archgenpsychiatry.2009.91.CrossRefGoogle ScholarPubMed
Moser, D. A., Doucet, G. E., Lee, W. H., Rasgon, A., Krinsky, H., Leibu, E., … Frangou, S. (2018). Multivariate associations among behavioral, clinical, and multimodal imaging phenotypes in patients with psychosis. JAMA Psychiatry, 75(4), 386395. doi:10.1001/jamapsychiatry.2017.4741.CrossRefGoogle ScholarPubMed
Murphy, C., Jefferies, E., Rueschemeyer, S.-A., Sormaz, M., Wang, H.-T., Margulies, D. S., & Smallwood, J. (2018). Distant from input: Evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition. Neuroimage, 171, 393401. doi:10.1016/j.neuroimage.2018.01.017.CrossRefGoogle ScholarPubMed
Northoff, G., & Duncan, N. W. (2016). How do abnormalities in the brain's spontaneous activity translate into symptoms in schizophrenia? From an overview of resting state activity findings to a proposed spatiotemporal psychopathology. Progress in Neurobiology, 145, 2645. doi:10.1016/j.pneurobio.2016.08.003.CrossRefGoogle ScholarPubMed
Paquola, C., De Wael, R. V., Wagstyl, K., Bethlehem, R. A., Hong, S.-J., Seidlitz, J., … Margulies, D. S. (2019). Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biology, 17(5), e3000284. doi:10.1371/journal.pbio.3000284.CrossRefGoogle ScholarPubMed
Paquola, C., Seidlitz, J., Benkarim, O., Royer, J., Klimes, P., Bethlehem, R. A., … Frauscher, B. (2020). The cortical wiring scheme of hierarchical information processing. bioRxiv.Google Scholar
Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: Where are we now? Neuroscience & Biobehavioral Reviews, 35(5), 11101124. doi:10.1016/j.neubiorev.2010.11.004.CrossRefGoogle ScholarPubMed
Phillips, O. R., Nuechterlein, K. H., Asarnow, R. F., Clark, K. A., Cabeen, R., Yang, Y., … Narr, K. L. (2011). Mapping corticocortical structural integrity in schizophrenia and effects of genetic liability. Biological Psychiatry, 70(7), 680689. doi:10.1016/j.biopsych.2011.03.039.CrossRefGoogle ScholarPubMed
Pretus, C., Marcos-Vidal, L., Martínez-García, M., Picado, M., Ramos-Quiroga, J. A., Richarte, V., … Carmona, S. (2019). Stepwise functional connectivity reveals altered sensory-multimodal integration in medication-naïve adults with attention deficit hyperactivity disorder. Human Brain Mapping, 40(16), 46454656. doi:10.1002/hbm.24727.CrossRefGoogle ScholarPubMed
Rassovsky, Y., Green, M. F., Nuechterlein, K. H., Breitmeyer, B., & Mintz, J. (2005). Modulation of attention during visual masking in schizophrenia. American Journal of Psychiatry, 162(8), 15331535. doi:10.1176/appi.ajp.162.8.1533.CrossRefGoogle ScholarPubMed
Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Joon Jo, H., Martin, A., & Cox, R. W. (2012). Trouble at rest: How correlation patterns and group differences become distorted after global signal regression. Brain Connectivity, 2(1), 2532. doi:10.1089/brain.2012.0080.CrossRefGoogle ScholarPubMed
Sepulcre, J. (2014). Functional streams and cortical integration in the human brain. The Neuroscientist, 20(5), 499508. doi:10.1177/1073858414531657.CrossRefGoogle ScholarPubMed
Sepulcre, J., Sabuncu, M. R., Yeo, T. B., Liu, H., & Johnson, K. A. (2012). Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. Journal of Neuroscience, 32(31), 1064910661. doi:10.1523/JNEUROSCI.0759-12.2012.CrossRefGoogle ScholarPubMed
Skåtun, K. C., Kaufmann, T., Doan, N. T., Alnæs, D., Córdova-Palomera, A., Jönsson, E. G., … Westlye, L. T. (2017). Consistent functional connectivity alterations in schizophrenia spectrum disorder: A multisite study. Schizophrenia Bulletin, 43(4), 914924. doi:10.1093/schbul/sbw145.CrossRefGoogle ScholarPubMed
Stevenson, R. A., Park, S., Cochran, C., McIntosh, L. G., Noel, J.-P., Barense, M. D., … Wallace, M. T. (2017). The associations between multisensory temporal processing and symptoms of schizophrenia. Schizophrenia Research, 179, 97103. doi:10.1016/j.schres.2016.09.035.CrossRefGoogle ScholarPubMed
Surti, T. S., Corbera, S., Bell, M. D., & Wexler, B. E. (2011). Successful computer-based visual training specifically predicts visual memory enhancement over verbal memory improvement in schizophrenia. Schizophrenia Research, 132(2–3), 131134. doi:10.1016/j.schres.2011.06.031.CrossRefGoogle ScholarPubMed
Taylor, P., Hobbs, J., Burroni, J., & Siegelmann, H. (2015). The global landscape of cognition: Hierarchical aggregation as an organizational principle of human cortical networks and functions. Scientific Reports, 5(1), 118. doi:10.1038/srep18112.CrossRefGoogle ScholarPubMed
Tomasi, D., & Volkow, N. D. (2010). Functional connectivity density mapping. Proceedings of the National Academy of Sciences, 107(21), 98859890. doi:10.1073/pnas.1001414107.CrossRefGoogle ScholarPubMed
Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519534. doi:10.1016/j.euroneuro.2010.03.008.CrossRefGoogle ScholarPubMed
van der Stelt, O., Frye, J., Lieberman, J. A., & Belger, A. (2004). Impaired P3 generation reflects high-level and progressive neurocognitive dysfunction in schizophrenia. Archives of General Psychiatry, 61(3), 237248. doi:10.1001/archpsyc.61.3.237.CrossRefGoogle ScholarPubMed
Vinogradov, S., Fisher, M., & de Villers-Sidani, E. (2012). Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology, 37(1), 4376. doi:10.1038/npp.2011.251.CrossRefGoogle ScholarPubMed
Wig, G. S. (2017). Segregated systems of human brain networks. Trends in Cognitive Sciences, 21(12), 981996. doi:10.1016/j.tics.2017.09.006.CrossRefGoogle ScholarPubMed
Woods, S. W. (2003). Chlorpromazine equivalent doses for the newer atypical antipsychotics. The Journal of Clinical Psychiatry, 64(6), 663667. doi:10.4088/jcp.v64n0607.CrossRefGoogle ScholarPubMed
Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PloS One, 8(7), e68910. doi:10.1371/journal.pone.0068910.CrossRefGoogle ScholarPubMed
Yan, C.-G., Wang, X.-D., Zuo, X.-N., & Zang, Y.-F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339351. doi:10.1007/s12021-016-9299-4.CrossRefGoogle ScholarPubMed
Yang, M., He, H., Duan, M., Chen, X., Chang, X., Lai, Y., … Yao, D. (2018). The effects of music intervention on functional connectivity strength of the brain in schizophrenia. Neural Plasticity, 2018, 2821832. doi:10.1155/2018/2821832.CrossRefGoogle ScholarPubMed
Yang, G. J., Murray, J. D., Repovs, G., Cole, M. W., Savic, A., Glasser, M. F., … Pearlson, G. D. (2014). Altered global brain signal in schizophrenia. Proceedings of the National Academy of Sciences, 111(20), 74387443. doi:10.1073/pnas.1405289111.CrossRefGoogle ScholarPubMed
Yang, G. J., Murray, J. D., Wang, X.-J., Glahn, D. C., Pearlson, G. D., Repovs, G., … Anticevic, A. (2016). Functional hierarchy underlies preferential connectivity disturbances in schizophrenia. Proceedings of the National Academy of Sciences, 113(2), E219E228. doi:10.1073/pnas.1508436113.Google ScholarPubMed
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Polimeni, J. R. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 11251165. doi:10.1152/jn.00338.2011.Google ScholarPubMed
Zhang, Y., Guo, G., & Tian, Y. (2019). Increased temporal dynamics of intrinsic brain activity in sensory and perceptual network of schizophrenia. Frontiers in Psychiatry, 10, 484. doi:10.3389/fpsyt.2019.00484.CrossRefGoogle ScholarPubMed
Supplementary material: File

Dong et al. supplementary material

Dong et al. supplementary material

Download Dong et al. supplementary material(File)
File 4.2 MB