Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T14:15:32.185Z Has data issue: false hasContentIssue false

Neural habituation during acute stress signals a blunted endocrine response and poor resilience

Published online by Cambridge University Press:  13 June 2023

Yadong Liu
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
Xiaolin Zhao
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
Weiyu Hu
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
Yipeng Ren
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
Zhenni Wei
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
Xi Ren
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
Zihan Tang
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
Nan Wang
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
Haopeng Chen
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
Yizhuo Li
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
Zhenhao Shi
Affiliation:
Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
Shaozheng Qin
Affiliation:
State Key Laboratory of Cognitive Neuroscience and Learning, McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
Juan Yang*
Affiliation:
Faculty of Psychology, Southwest University, Chongqing 400715, China Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
*
Corresponding author: Juan Yang; Email: valleyqq@swu.edu.cn

Abstract

Background

A blunted hypothalamic–pituitary–adrenal (HPA) axis response to acute stress is associated with psychiatric symptoms. Although the prefrontal cortex and limbic areas are important regulators of the HPA axis, whether the neural habituation of these regions during stress signals both blunted HPA axis responses and psychiatric symptoms remains unclear. In this study, neural habituation during acute stress and its associations with the stress cortisol response, resilience, and depression were evaluated.

Methods

Seventy-seven participants (17–22 years old, 37 women) were recruited for a ScanSTRESS brain imaging study, and the activation changes between the first and last stress blocks were used as the neural habituation index. Meanwhile, participants' salivary cortisol during test was collected. Individual-level resilience and depression were measured using questionnaires. Correlation and moderation analyses were conducted to investigate the association between neural habituation and endocrine data and mental symptoms. Validated analyses were conducted using a Montreal Image Stress Test dataset in another independent sample (48 participants; 17–22 years old, 24 women).

Results

Neural habituation of the prefrontal cortex and limbic area was negatively correlated with cortisol responses in both datasets. In the ScanSTRESS paradigm, neural habituation was both positively correlated with depression and negatively correlated with resilience. Moreover, resilience moderated the relationship between neural habituation in the ventromedial prefrontal cortex and cortisol response.

Conclusions

This study suggested that neural habituation of the prefrontal cortex and limbic area could reflect motivation dysregulation during repeated failures and negative feedback, which might further lead to maladaptive mental states.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors equally contributed to this work.

References

Akdeniz, C., Tost, H., Streit, F., Haddad, L., Wüst, S., Schäfer, A., … Meyer-Lindenberg, A. (2014). Neuroimaging evidence for a role of neural social stress processing in ethnic minority-associated environmental risk. JAMA Psychiatry, 71(6), 672680. https://doi.org/10.1001/jamapsychiatry.2014.35.CrossRefGoogle ScholarPubMed
Bai, Y., Belin, D., Zheng, X., Liu, Z., & Zhang, Y. (2017). Acute stress worsens the deficits in appetitive behaviors for social and sexual stimuli displayed by rats after long-term withdrawal from morphine. Psychopharmacology, 234(11), 16931702. https://doi.org/10.1007/s00213-017-4571-3.CrossRefGoogle ScholarPubMed
Berretz, G., Packheiser, J., Kumsta, R., Wolf, O. T., & Ocklenburg, S. (2021). The brain under stress – A systematic review and activation likelihood estimation meta-analysis of changes in BOLD signal associated with acute stress exposure. Neuroscience and Biobehavioral Reviews, 124(September 2020), 8999. https://doi.org/10.1016/j.neubiorev.2021.01.001.CrossRefGoogle Scholar
Bibbey, A., Ginty, A. T., Brindle, R. C., Phillips, A. C., & Carroll, D. (2016). Blunted cardiac stress reactors exhibit relatively high levels of behavioural impulsivity. Physiology and Behavior, 159, 4044. https://doi.org/10.1016/j.physbeh.2016.03.011.CrossRefGoogle ScholarPubMed
Blackford, J. U., Allen, A. H., Cowan, R. L., & Avery, S. N. (2013). Amygdala and hippocampus fail to habituate to faces in individuals with an inhibited temperament. Social Cognitive and Affective Neuroscience, 8(2), 143150. https://doi.org/10.1093/scan/nsr078.CrossRefGoogle ScholarPubMed
Bratt, A. M., Kelley, S. P., Knowles, J. P., Barrett, J., Davis, K., Davis, M., & Mittleman, G. (2001). Long term modulation of the HPA axis by the hippocampus: Behavioral, biochemical and immunological endpoints in rats exposed to chronic mild stress. Psychoneuroendocrinology, 26(2), 121145. https://doi.org/10.1016/S0306-4530(00)00033-0.CrossRefGoogle ScholarPubMed
Calvi, J. L., Chen, F. R., Benson, V. B., Brindle, E., Bristow, M., De, A., … Granger, D. A. (2017). Measurement of cortisol in saliva: A comparison of measurement error within and between international academic-research laboratories. BMC Research Notes, 10(1), 16. https://doi.org/10.1186/s13104-017-2805-4.CrossRefGoogle ScholarPubMed
Cao, H., Chen, O. Y., McEwen, S. C., Forsyth, J. K., Gee, D. G., Bearden, C. E., … Mirzakhanian, H. (2021). Cross-paradigm connectivity: Reliability, stability, and utility. Brain Imaging and Behavior, 15, 614629.CrossRefGoogle ScholarPubMed
Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26(3), 321352. https://doi.org/10.1016/S0149-7634(02)00007-6.CrossRefGoogle ScholarPubMed
Carroll, D., David Batty, G., Mortensen, L. H., Deary, I. J., & Phillips, A. C. (2011). Low cognitive ability in early adulthood is associated with reduced lung function in middle age: The Vietnam experience study. Thorax, 66(10), 884888. https://doi.org/10.1136/thoraxjnl-2011-200104.CrossRefGoogle ScholarPubMed
Carroll, D., Ginty, A. T., Whittaker, A. C., Lovallo, W. R., & de Rooij, S. R. (2017). The behavioural, cognitive, and neural corollaries of blunted cardiovascular and cortisol reactions to acute psychological stress. Neuroscience and Biobehavioral Reviews, 77, 7486. https://doi.org/10.1016/j.neubiorev.2017.02.025.CrossRefGoogle ScholarPubMed
Carroll, D., Lovallo, W. R., & Phillips, A. C. (2009). Are large physiological reactions to acute psychological stress always bad for health? Social and Personality Psychology Compass, 3(5), 725743. https://doi.org/10.1111/j.1751-9004.2009.00205.x.CrossRefGoogle Scholar
Carroll, D., Phillips, A. C., Hunt, K., & Der, G. (2007). Symptoms of depression and cardiovascular reactions to acute psychological stress: Evidence from a population study. Biological Psychology, 75(1), 6874. https://doi.org/10.1016/j.biopsycho.2006.12.002.CrossRefGoogle ScholarPubMed
Cyr, N. E., & Romero, L. M. (2009). Identifying hormonal habituation in field studies of stress. General and Comparative Endocrinology, 161(3), 295303. https://doi.org/10.1016/j.ygcen.2009.02.001.CrossRefGoogle ScholarPubMed
Dedovic, K., Duchesne, A., Andrews, J., Engert, V., & Pruessner, J. C. (2009). The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. NeuroImage, 47(3), 864871. https://doi.org/10.1016/j.neuroimage.2009.05.074.CrossRefGoogle ScholarPubMed
Dedovic, K., Renwick, R., Mahani, N. K., Engert, V., Lupien, S. J., & Pruessner, J. C. (2005). The Montreal Imaging Stress Task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. Journal of Psychiatry and Neuroscience, 30(5), 319325.Google ScholarPubMed
Der-Avakian, A., Mazei-Robison, M. S., Kesby, J. P., Nestler, E. J., & Markou, A. (2014). Enduring deficits in brain reward function after chronic social defeat in rats: Susceptibility, resilience, and antidepressant response. Biological Psychiatry, 76(7), 542549. https://doi.org/10.1016/j.biopsych.2014.01.013.CrossRefGoogle ScholarPubMed
Dwivedi, Y., Roy, B., Lugli, G., Rizavi, H., Zhang, H., & Smalheiser, N. R. (2015). Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: Relevance to depression pathophysiology. Translational Psychiatry, 5(11), e682e682. https://doi.org/10.1038/tp.2015.175.CrossRefGoogle ScholarPubMed
Evans, G. W., & Stecker, R. (2004). Motivational consequences of environmental stress. Journal of Environmental Psychology, 24(2), 143165. https://doi.org/10.1016/S0272-4944(03)00076-8.CrossRefGoogle Scholar
Foley, P., & Kirschbaum, C. (2010). Human hypothalamus–pituitary–adrenal axis responses to acute psychosocial stress in laboratory settings. Neuroscience and Biobehavioral Reviews, 35(1), 9196. https://doi.org/10.1016/j.neubiorev.2010.01.010.CrossRefGoogle ScholarPubMed
Ginty, A. T., Gianaros, P. J., Derbyshire, S. W. G., Phillips, A. C., & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50(3), 219229. https://doi.org/10.1111/psyp.12017.CrossRefGoogle ScholarPubMed
Gold, A. L., Morey, R. A., & McCarthy, G. (2015). Amygdala–prefrontal cortex functional connectivity during threat-induced anxiety and goal distraction. Biological Psychiatry, 77(4), 394403. https://doi.org/10.1016/j.biopsych.2014.03.030.CrossRefGoogle ScholarPubMed
Gump, B. B., Stewart, P., Reihman, J., Lonky, E., Darvill, T., Parsons, P. J., & Granger, D. A. (2008). Low-level prenatal and postnatal blood lead exposure and adrenocortical responses to acute stress in children. Environmental Health Perspectives, 116(2), 249255. https://doi.org/10.1289/ehp.10391.CrossRefGoogle ScholarPubMed
Hamer, M., O'Donnell, K., Lahiri, A., & Steptoe, A. (2010). Salivary cortisol responses to mental stress are associated with coronary artery calcification in healthy men and women. European Heart Journal, 31(4), 424429. https://doi.org/10.1093/eurheartj/ehp386.CrossRefGoogle ScholarPubMed
Harmon, K. M., Greenwald, M. L., McFarland, A., Beckwith, T., & Cromwell, H. C. (2009). The effects of prenatal stress on motivation in the rat pup. Stress (Amsterdam, Netherlands), 12(3), 250258. https://doi.org/10.1080/10253890802367265.CrossRefGoogle ScholarPubMed
Hase, A., aan het Rot, M., de Miranda Azevedo, R., & Freeman, P. (2020). Threat-related motivational disengagement: Integrating blunted cardiovascular reactivity to stress into the biopsychosocial model of challenge and threat. Anxiety, Stress and Coping, 33(4), 355369. https://doi.org/10.1080/10615806.2020.1755819.CrossRefGoogle ScholarPubMed
Henze, G. I., Konzok, J., Kreuzpointner, L., Bärtl, C., Peter, H., Giglberger, M., … Wüst, S. (2020). Increasing deactivation of limbic structures over psychosocial stress exposure time. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(7), 697704. https://doi.org/10.1016/j.bpsc.2020.04.002.Google ScholarPubMed
Hollon, N. G., Burgeno, L. M., & Phillips, P. E. M. (2015). Stress effects on the neural substrates of motivated behavior. Nature Neuroscience, 18(10), 14051412. https://doi.org/10.1038/nn.4114.CrossRefGoogle ScholarPubMed
Holz, N. E., Tost, H., & Meyer-Lindenberg, A. (2020). Resilience and the brain: A key role for regulatory circuits linked to social stress and support. Molecular Psychiatry, 25(2), 379396. https://doi.org/10.1038/s41380-019-0551-9.CrossRefGoogle Scholar
Howden, E. J., Perhonen, M., Peshock, R. M., Zhang, R., Arbab-Zadeh, A., Adams-Huet, B., & Levine, B. D. (2015). Females have a blunted cardiovascular response to one year of intensive supervised endurance training. Journal of Applied Physiology, 119(1), 3746. https://doi.org/10.1152/japplphysiol.00092.2015.CrossRefGoogle ScholarPubMed
Hu, K. (2018). Neural activity to threat in ventromedial prefrontal cortex correlates with individual differences in anxiety and reward processing. Neuropsychologia, 117, 566573. https://doi.org/10.1016/j.neuropsychologia.2018.07.004.CrossRefGoogle ScholarPubMed
Jansen, L. M. C., Gispen-de Wied, C. C., Gademan, P. J., De Jonge, R. C. J., Van Der Linden, J. A., & Kahn, R. S. (1998). Blunted cortisol response to a psychosocial stressor in schizophrenia. Schizophrenia Research, 33(1–2), 8794. https://doi.org/10.1016/S0920-9964(98)00066-8.CrossRefGoogle ScholarPubMed
Jarrard, L. E. (1973). The hippocampus and motivation. Psychological Bulletin, 79(1), 1.CrossRefGoogle ScholarPubMed
Khalili-Mahani, N., Dedovic, K., Engert, V., Pruessner, M., & Pruessner, J. C. (2010). Hippocampal activation during a cognitive task is associated with subsequent neuroendocrine and cognitive responses to psychological stress. Hippocampus, 20(2), 323334. https://doi.org/10.1002/hipo.20623.CrossRefGoogle ScholarPubMed
Kim, E. J., Pellman, B., & Kim, J. J. (2015). Stress effects on the hippocampus: A critical review. Learning and Memory, 22(9), 411416. https://doi.org/10.1101/lm.037291.114.CrossRefGoogle ScholarPubMed
Kim, J. S., Han, S. Y., & Iremonger, K. J. (2019). Stress experience and hormone feedback tune distinct components of hypothalamic CRH neuron activity. Nature Communications, 10(1), 115. https://doi.org/10.1038/s41467-019-13639-8.CrossRefGoogle ScholarPubMed
Kogler, L., Müller, V. I., Chang, A., Eickhoff, S. B., Fox, P. T., Gur, R. C., & Derntl, B. (2015). Psychosocial versus physiological stress – Meta-analyses on deactivations and activations of the neural correlates of stress reactions. NeuroImage, 119, 235251. https://doi.org/10.1016/j.neuroimage.2015.06.059.CrossRefGoogle ScholarPubMed
Koning, A. S. C. A. M., Buurstede, J. C., Van Weert, L. T. C. M., & Meijer, O. C. (2019). Glucocorticoid and mineralocorticoid receptors in the brain: A transcriptional perspective. Journal of the Endocrine Society, 3(10), 19171930. https://doi.org/10.1210/js.2019-00158.CrossRefGoogle Scholar
Krkovic, K., Clamor, A., & Lincoln, T. M. (2018). Emotion regulation as a predictor of the endocrine, autonomic, affective, and symptomatic stress response and recovery. Psychoneuroendocrinology, 94(December 2017), 112120. https://doi.org/10.1016/j.psyneuen.2018.04.028.CrossRefGoogle ScholarPubMed
Lederbogen, F., Kirsch, P., Haddad, L., Streit, F., Tost, H., Schuch, P., … Meyer-Lindenberg, A. (2011). City living and urban upbringing affect neural social stress processing in humans. Nature, 474(7352), 498501. https://doi.org/10.1038/nature10190.CrossRefGoogle Scholar
Lee, W., & Reeve, J. (2020). Remembering pleasure and personal meaning from episodes of intrinsic motivation: An fMRI study. Motivation and Emotion, 44(6), 810818. https://doi.org/10.1007/s11031-020-09855-1.CrossRefGoogle Scholar
López, J. F., Akil, H., & Watson, S. J. (1999). Neural circuits mediating stress. Biological Psychiatry, 46(11), 14611471. https://doi.org/10.1016/S0006-3223(99)00266-8.CrossRefGoogle ScholarPubMed
Maier, S. F., & Watkins, L. R. (2010). Role of the medial prefrontal cortex in coping and resilience. Brain Research, 1355, 5260. https://doi.org/10.1016/j.brainres.2010.08.039.CrossRefGoogle ScholarPubMed
Martin, A. (2002). Motivation and academic resilience: Developing a model for student enhancement. Australian Journal of Education, 46(1), 3449. https://doi.org/10.1177/000494410204600104.CrossRefGoogle Scholar
McCarty, R. (2016). Learning about stress: Neural, endocrine and behavioral adaptations. Stress (Amsterdam, Netherlands), 19(5), 449475. https://doi.org/10.1080/10253890.2016.1192120.CrossRefGoogle ScholarPubMed
Min, J. A., Yu, J. J., Lee, C. U., & Chae, J. H. (2013). Cognitive emotion regulation strategies contributing to resilience in patients with depression and/or anxiety disorders. Comprehensive Psychiatry, 54(8), 11901197. https://doi.org/10.1016/j.comppsych.2013.05.008.CrossRefGoogle ScholarPubMed
Mujica-Parodi, L. R., Cha, J., & Gao, J. (2017). From anxious to reckless: A control systems approach unifies prefrontal-limbic regulation across the spectrum of threat detection. Frontiers in Systems Neuroscience, 11, 18. https://doi.org/10.3389/fnsys.2017.00018.CrossRefGoogle Scholar
Noack, H., Nolte, L., Nieratschker, V., Habel, U., & Derntl, B. (2019). Imaging stress: An overview of stress induction methods in the MR scanner. Journal of Neural Transmission, 126(9), 11871202. https://doi.org/10.1007/s00702-018-01965-y.CrossRefGoogle ScholarPubMed
Nowak, J., Dimitrov, A., Oei, N. Y. L., Walter, H., Adli, M., & Veer, I. M. (2020). Association of naturally occurring sleep loss with reduced amygdala resting-state functional connectivity following psychosocial stress. Psychoneuroendocrinology, 114(January), 104585. https://doi.org/10.1016/j.psyneuen.2020.104585.CrossRefGoogle ScholarPubMed
Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., … Barch, D. M. (2014). Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology, 39(5), 12451253. https://doi.org/10.1038/npp.2013.327.CrossRefGoogle ScholarPubMed
Pannekoek, J. N., Veer, I. M., Van Tol, M. J., Van der Werff, S. J. A., Demenescu, L. R., Aleman, A., … Van der Wee, N. J. A. (2013). Resting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidity. European Neuropsychopharmacology, 23(3), 186195. https://doi.org/10.1016/j.euroneuro.2012.04.018.CrossRefGoogle ScholarPubMed
Paris, J. J., Franco, C., Sodano, R., Frye, C. A., & Wulfert, E. (2010). Gambling pathology is associated with dampened cortisol response among men and women. Physiology and Behavior, 99(2), 230233. https://doi.org/10.1016/j.physbeh.2009.04.002.CrossRefGoogle ScholarPubMed
Peters, A., & McEwen, B. S. (2015). Stress habituation, body shape and cardiovascular mortality. Neuroscience and Biobehavioral Reviews, 56, 139150. https://doi.org/10.1016/j.neubiorev.2015.07.001.CrossRefGoogle ScholarPubMed
Phillips, A. C., Ginty, A. T., & Hughes, B. M. (2013). The other side of the coin: Blunted cardiovascular and cortisol reactivity are associated with negative health outcomes. International Journal of Psychophysiology, 90(1), 17. https://doi.org/10.1016/j.ijpsycho.2013.02.002.CrossRefGoogle ScholarPubMed
Phillips, A. C., Hunt, K., Der, G., & Carroll, D. (2011). Blunted cardiac reactions to acute psychological stress predict symptoms of depression five years later: Evidence from a large community study. Psychophysiology, 48(1), 142148. https://doi.org/10.1111/j.1469-8986.2010.01045.x.CrossRefGoogle ScholarPubMed
Plichta, M. M., Grimm, O., Morgen, K., Mier, D., Sauer, C., Haddad, L., … Meyer-Lindenberg, A. (2014). Amygdala habituation: A reliable fMRI phenotype. NeuroImage, 103, 383390. https://doi.org/10.1016/j.neuroimage.2014.09.059.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Dedovic, K., Khalili-Mahani, N., Engert, V., Pruessner, M., Buss, C., … Lupien, S. (2008). Deactivation of the limbic system during acute psychosocial stress: Evidence from positron emission tomography and functional magnetic resonance imaging studies. Biological Psychiatry, 63(2), 234240. https://doi.org/10.1016/j.biopsych.2007.04.041.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28(7), 916931.CrossRefGoogle ScholarPubMed
Pruessner, M., Pruessner, J. C., Hellhammer, D. H., Bruce Pike, G., & Lupien, S. J. (2007). The associations among hippocampal volume, cortisol reactivity, and memory performance in healthy young men. Psychiatry Research: Neuroimaging, 155(1), 110. https://doi.org/10.1016/j.pscychresns.2006.12.007.CrossRefGoogle ScholarPubMed
Radloff, L. S. (1977). The CES-D Scale. Applied Psychological Measurement, 1(3), 385401. http://dx.doi.org/10.1177/014662167700100306.CrossRefGoogle Scholar
Rankin, C. H., Abrams, T., Barry, R. J., Bhatnagar, S., Clayton, D. F., Colombo, J., … Thompson, R. F. (2009). Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory, 92(2), 135138. https://doi.org/10.1016/j.nlm.2008.09.012.CrossRefGoogle ScholarPubMed
Ren, X., Zhao, X., Li, J., Liu, Y., Ren, Y., Pruessner, J. C., & Yang, J. (2022). The hippocampal-ventral medial prefrontal cortex neurocircuitry involvement in the association of daily life stress with acute perceived stress and cortisol responses. Psychosomatic Medicine, 84(3), 276287. https://doi.org/10.1097/PSY.0000000000001058.CrossRefGoogle ScholarPubMed
Resnick, B. (2011). The relationship between resilience and motivation. In B. Resnick, L. P. Gwyther, & K. A. Roberto (Eds.), Resilience in Aging: Concepts, Research, and Outcomes (pp. 199215). Cham: Springer. https://doi.org/10.1007/978-1-4419-0232-0_13.CrossRefGoogle Scholar
Roche, D. J. O., King, A. C., Cohoon, A. J., & Lovallo, W. R. (2013). Hormonal contraceptive use diminishes salivary cortisol response to psychosocial stress and naltrexone in healthy women. Pharmacology Biochemistry and Behavior, 109, 8490. https://doi.org/10.1016/j.pbb.2013.05.007.CrossRefGoogle ScholarPubMed
Rutter, M. (2006). Implications of resilience concepts for scientific understanding. Annals of the New York Academy of Sciences, 1094(1), 112. https://doi.org/10.1196/annals.1376.002.CrossRefGoogle ScholarPubMed
Sandner, M., Lois, G., Streit, F., Zeier, P., Kirsch, P., Wüst, S., & Wessa, M. (2020). Investigating individual stress reactivity: High hair cortisol predicts lower acute stress responses. Psychoneuroendocrinology, 118(March), 104660. https://doi.org/10.1016/j.psyneuen.2020.104660.CrossRefGoogle ScholarPubMed
Sharma, R., Smith, S. A., Boukina, N., Dordari, A., Mistry, A., Taylor, B. C., … Ismail, N. (2020). Use of the birth control pill affects stress reactivity and brain structure and function. Hormones and Behavior, 124, 104783. https://doi.org/10.1016/j.yhbeh.2020.104783.CrossRefGoogle ScholarPubMed
Shields, G. S. (2017). Response: Commentary: The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Frontiers in Psychology, 8(Dec), 25442551. https://doi.org/10.3389/fpsyg.2017.02090.CrossRefGoogle ScholarPubMed
Sinha, R., Lacadie, C. M., Todd Constable, R., & Seo, D. (2016). Dynamic neural activity during stress signals resilient coping. Proceedings of the National Academy of Sciences of the United States of America, 113(31), 88378842. https://doi.org/10.1073/PNAS.1600965113.CrossRefGoogle ScholarPubMed
Sladky, R., Höflich, A., Atanelov, J., Kraus, C., Baldinger, P., Moser, E., … Windischberger, C. (2012). Increased neural habituation in the amygdala and orbitofrontal cortex in social anxiety disorder revealed by fMRI. PLoS ONE, 7(11), e50050. https://doi.org/10.1371/journal.pone.0050050.CrossRefGoogle ScholarPubMed
Spielberg, J. M., Miller, G. A., Warren, S. L., Engels, A. S., Crocker, L. D., Banich, M. T., … Heller, W. (2012). A brain network instantiating approach and avoidance motivation. Psychophysiology, 49(9), 12001214. https://doi.org/10.1111/j.1469-8986.2012.01443.x.CrossRefGoogle ScholarPubMed
Stevens, J. S., Kim, Y. J., Galatzer-Levy, I. R., Reddy, R., Ely, T. D., Nemeroff, C. B., … Ressler, K. J. (2017). Amygdala reactivity and anterior cingulate habituation predict posttraumatic stress disorder symptom maintenance after acute civilian trauma. Biological Psychiatry, 81(12), 10231029. https://doi.org/10.1016/j.biopsych.2016.11.015.CrossRefGoogle ScholarPubMed
Tugade, M. M., & Fredrickson, B. L. (2007). Regulation of positive emotions: Emotion regulation strategies that promote resilience. Journal of Happiness Studies, 8(3), 311333. https://doi.org/10.1007/s10902-006-9015-4.CrossRefGoogle Scholar
Vaishnavi, S., Connor, K., & Davidson, J. R. T. (2007). An abbreviated version of the Connor–Davidson Resilience Scale (CD-RISC), the CD-RISC2: Psychometric properties and applications in psychopharmacological trials. Psychiatry Research, 152(2–3), 293297. https://doi.org/10.1016/j.psychres.2007.01.006.CrossRefGoogle Scholar
Van Paridon, K. N., Timmis, M. A., Nevison, C. M., & Bristow, M. (2017). The anticipatory stress response to sport competition; A systematic review with meta-analysis of cortisol reactivity. BMJ Open Sport & Exercise Medicine, 3(1), e000261. https://doi.org/10.1136/bmjsem-2017-000261.CrossRefGoogle ScholarPubMed
Vythilingam, M., Nelson, E. E., Scaramozza, M., Waldeck, T., Hazlett, G., Southwick, S. M., … Ernst, M. (2009). Reward circuitry in resilience to severe trauma: An fMRI investigation of resilient special forces soldiers. Psychiatry Research: Neuroimaging, 172(1), 7577. https://doi.org/10.1016/j.pscychresns.2008.06.008.CrossRefGoogle ScholarPubMed
Weekes, N. Y., Lewis, R. S., Goto, S. G., Garrison-Jakel, J., Patel, F., & Lupien, S. (2008). The effect of an environmental stressor on gender differences on the awakening cortisol response. Psychoneuroendocrinology, 33(6), 766772. https://doi.org/10.1016/j.psyneuen.2008.03.003.CrossRefGoogle ScholarPubMed
Wilson, C. L., Babb, T. L., Halgren, E., Wang, M. L., & Crandall, P. H. (1984). Habituation of human limbic neuronal response to sensory stimulation. Experimental Neurology, 84(1), 7497. https://doi.org/10.1016/0014-4886(84)90007-4.CrossRefGoogle ScholarPubMed
Xu, X., Dai, J., Chen, Y., Liu, C., Xin, F., Zhou, X., … Becker, B. (2021). Intrinsic connectivity of the prefrontal cortex and striato-limbic system respectively differentiate major depressive from generalized anxiety disorder. Neuropsychopharmacology, 46(4), 791798. https://doi.org/10.1038/s41386-020-00868-5.CrossRefGoogle ScholarPubMed
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339351. https://doi.org/10.1007/s12021-016-9299-4.CrossRefGoogle ScholarPubMed
Yang, Y., Yang, D., Tang, G., Zhou, C., Cheng, K., Zhou, J., … Xie, P. (2013). Proteomics reveals energy and glutathione metabolic dysregulation in the prefrontal cortex of a rat model of depression. Neuroscience, 247, 191200. https://doi.org/10.1016/j.neuroscience.2013.05.031.CrossRefGoogle ScholarPubMed
Zuo, X. N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., Blautzik, J., … Milham, M. P. (2014). An open science resource for establishing reliability and reproducibility in functional connectomics. Scientific Data, 1(1), 113. https://doi.org/10.1038/sdata.2014.49.CrossRefGoogle ScholarPubMed
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material
Download Liu et al. supplementary material(File)
File 1.5 MB