Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T10:40:02.157Z Has data issue: false hasContentIssue false

Impaired decision making and feedback evaluation in borderline personality disorder

Published online by Cambridge University Press:  24 January 2011

B. Schuermann*
Affiliation:
Humboldt-Universität zu Berlin, Berlin, Germany
N. Kathmann
Affiliation:
Humboldt-Universität zu Berlin, Berlin, Germany
C. Stiglmayr
Affiliation:
Humboldt-Universität zu Berlin, Berlin, Germany
B. Renneberg
Affiliation:
Freie Universität Berlin, Berlin, Germany
T. Endrass
Affiliation:
Humboldt-Universität zu Berlin, Berlin, Germany
*
*Address for correspondence: Dipl.-Psych. B. Schuermann, Humboldt-Universität zu Berlin, Institut für Psychologie, Rudower Chaussee 18, 12489 Berlin, Germany. (Email: beate.schuermann@hu-berlin.de)

Abstract

Background

Increased impulsivity is considered to be a core characteristic of borderline personality disorder (BPD) and has been shown to play a significant role in decision making and planning. Neuropsychological studies in BPD revealed impairments of executive functions, and it is assumed that these deficits are related to altered feedback processing. However, research on executive functions in BPD is still limited and the underlying deficits remain an open question. The present study, therefore, explored whether decision-making deficits are related to altered feedback evaluation in BPD.

Method

A total of 18 BPD patients and 18 matched healthy controls underwent a modified version of the Iowa Gambling Task while an electroencephalogram was recorded. Feedback processing was examined by measuring the feedback-related negativity (FRN) and the P300 as electrophysiological correlates of feedback evaluation.

Results

Behavioural results revealed that BPD patients, relative to controls, made more risky choices and did not improve their performance. With regard to the FRN, amplitudes in BPD patients did not discriminate between positive and negative feedback information. Further, BPD patients showed reduced FRN amplitudes, which were associated with enhanced impulsivity and enhanced risk taking. In contrast, the P300 amplitudes following negative feedback were increased in BPD patients, relative to controls.

Conclusions

This study indicates that BPD patients are impaired in decision making, which might be related to a dysfunctional use of feedback information. Specifically, BPD patients did not learn to avoid disadvantageous selections, even though they attended to negative consequences.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

APA (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association: Washington, DC.Google Scholar
Barratt, ES (1985). Impulsiveness subtraits: arousal and information processing. In Motivation, Emotion and Personality (ed. Spence, J. T. and Izard, C. E.), pp. 137146. Elsevier: North-Holland.Google Scholar
Bazanis, E, Rogers, RD, Dowson, JH, Taylor, P, Meux, C, Staley, C, Nevinson-Andrews, D, Taylor, C, Robbins, TW, Sahakian, BJ (2002). Neurocognitive deficits in decision making and planning of patients with DSM-III-R borderline personality disorder. Psychological Medicine 32, 13951405.CrossRefGoogle ScholarPubMed
Bechara, A, Damasio, AR, Damasio, H, Anderson, SW (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 715.CrossRefGoogle ScholarPubMed
Bechara, A, Damasio, H, Damasio, AR (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex 10, 295307.CrossRefGoogle ScholarPubMed
Bechara, A, Damasio, H, Damasio, AR, Lee, GP (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision making. Journal of Neuroscience 19, 54735481.CrossRefGoogle ScholarPubMed
Bechara, A, Dolan, S, Denburg, N, Hindes, A, Anderson, SW, Nathan, PE (2001). Decision making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39, 376389.CrossRefGoogle ScholarPubMed
Beck, AT, Ward, CH, Mendelson, M, Mock, J, Erbaugh, J (1961). An inventory for measuring depression. Archives of General Psychiatry 4, 561571.CrossRefGoogle ScholarPubMed
Berlin, HA, Rolls, ET, Iversen, SD (2005). Borderline personality disorder, impulsivity, and the orbitofrontal cortex. American Journal of Psychiatry 162, 23602373.CrossRefGoogle ScholarPubMed
Bornovalova, MA, Lejuez, CW, Daughters, SB, Zachary Rosenthal, M, Lynch, TR (2005). Impulsivity as a common process across borderline personality and substance use disorders. Clinical Psychology Review 25, 790812.CrossRefGoogle ScholarPubMed
Brown, JW, Braver, TS (2007). Risk prediction and aversion by anterior cingulate cortex. Cognitive, Affective and Behavioral Neuroscience 7, 266277.CrossRefGoogle ScholarPubMed
Cavedini, P, Riboldi, G, Keller, R, D'Annucci, A, Bellodi, L (2002). Frontal lobe dysfunction in pathological gambling patients. Biological Psychiatry 51, 334341.CrossRefGoogle ScholarPubMed
Chapman, AL, Leung, DW, Lynch, TR (2008). Impulsivity and emotion dysregulation in borderline personality disorder. Journal of Personality Disorders 22, 148164.CrossRefGoogle ScholarPubMed
Dalgleish, T, Yiend, J, Bramham, J, Teasdale, JD, Ogilvie, AD, Malhi, G, Howard, R (2004). Neuropsychological processing associated with recovery from depression after stereotactic subcaudate tractotomy. American Journal of Psychiatry 161, 19131916.CrossRefGoogle ScholarPubMed
Debener, S, Ullsperger, M, Siegel, M, Fiehler, K, von Cramon, DY, Engel, AK (2005). Trial-by-trial coupling of concurrent EEG and fMRI identifies the dynamics of performance monitoring. Journal of Neuroscience 25, 1173011737.CrossRefGoogle ScholarPubMed
De Bruijn, ERA, Grootens, KP, Verkes, RJ, Buchholz, V, Hummelen, JW, Hulstijn, W (2006 a). Neural correlates of impulsive responding in borderline personality disorder: ERP evidence for reduced action monitoring. Journal of Psychiatric Research 40, 428437.CrossRefGoogle ScholarPubMed
De Bruijn, ERA, Mars, RB, Hulstijn, W (2004). ‘It wasn't me … or was it?’ How false feedback affects performance. In Errors, Conflicts, and the Brain. Current Opinions on Performance Monitoring (ed. Ullsperger, M. and Falkenstein, M.), pp. 118124. MPI of Cognitive Neuroscience: Leipzig.Google Scholar
De Bruijn, ERA, Sabbe, BGC, Hulstijn, W, Ruigt, GSF, Verkes, RJ (2006 b). Effects of antipsychotic and antidepressant drugs on action monitoring in healthy volunteers. Brain Research 1105, 122129.CrossRefGoogle ScholarPubMed
De La Fuente, JM, Goldman, S, Stanus, E, Vizuete, C, Morlan, I, Bobes, J, Mendlewicz, J (1997). Brain glucose metabolism in borderline personality disorder. Journal of Psychiatric Research 31, 531541.CrossRefGoogle ScholarPubMed
Donegan, NH, Sanislow, CA, Blumberg, HP, Fulbright, RK, Lacadie, C, Skudlarski, P, Gore, JC, Olson, IR, McGlashan, TH, Wexler, BE (2003). Amygdala hyperreactivity in borderline personality disorder: implications for emotional dysregulation. Biological Psychiatry 54, 12841293.CrossRefGoogle ScholarPubMed
Dunn, BD, Dalgleish, T, Lawrence, AD (2006). The somatic marker hypothesis: a critical evaluation. Neuroscience and Biobehavioural Reviews 30, 239271.CrossRefGoogle ScholarPubMed
Falkenstein, M, Hohnsbein, J, Hoormann, J, Blanke, L (1990). Effects of errors in choice reaction tasks on the ERP under focused and devided attention. In Psychophysiological Brain Research (ed. Brunia, C. H. M., Gaillard, A. W. K. and Kok, A.), pp. 192195. Tilburg University Press: Tilburg.Google Scholar
Fellows, LK, Farah, MJ (2005). Different underlying impairments in decision making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex 15, 5863.CrossRefGoogle ScholarPubMed
Frank, MJ, Woroch, BS, Curran, T (2005). Error-related negativity predicts reinforcement learning and conflict biases. Neuron 47, 495501.CrossRefGoogle ScholarPubMed
Friedel, RO (2004). Dopamine dysfunction in borderline personality disorder: a hypothesis. Neuropsychopharmacology 29, 10291039.CrossRefGoogle ScholarPubMed
Gehring, WJ, Goss, B, Coles, MGH, Meyer, DE, Donchin, E (1990). The error-related negativity: an event related brain potential accompanying errors. Psychophysiology 27, 34.Google Scholar
Gehring, WJ, Willoughby, AR (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295, 22792282.CrossRefGoogle ScholarPubMed
Haaland, VO, Landro, NI (2007). Decision making as measured with the Iowa Gambling Task in patients with borderline personality disorder. Journal of the International Neuropsychological Society 13, 699703.CrossRefGoogle ScholarPubMed
Hajcak, G, Holroyd, CB, Moser, JS, Simons, RF (2005). Brain potentials associated with expected and unexpected good and bad outcomes. Psychophysiology 42, 161170.CrossRefGoogle ScholarPubMed
Hajcak, G, Moser, JS, Holroyd, CB, Simons, RF (2007). It's worse than you thought: the feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology 44, 905912.CrossRefGoogle ScholarPubMed
Hazlett, EA, New, AS, Newmark, R, Haznedar, MM, Lo, JN, Speiser, LJ, Chen, AD, Mitropoulou, V, Minzenberg, M, Siever, LJ, Buchsbaum, MS (2005). Reduced anterior and posterior cingulate gray matter in borderline personality disorder. Biological Psychiatry 58, 614623.CrossRefGoogle ScholarPubMed
Hewig, J, Trippe, R, Hecht, H, Coles, MG, Holroyd, CB, Miltner, WH (2007). Decision making in Blackjack: an electrophysiological analysis. Cerebral Cortex 17, 865877.CrossRefGoogle ScholarPubMed
Hochhausen, NM, Lorenz, AR, Newman, JP (2002). Specifying the impulsivity of female inmates with borderline personality disorder. Journal of Abnormal Psychology 111, 495501.CrossRefGoogle ScholarPubMed
Hollander, E, Rosen, J (2000). Impulsivity. Journal of Psychopharmacology 14, S39S44.CrossRefGoogle ScholarPubMed
Holmes, AJ, Pizzagalli, DA (2010). Effects of task-relevant incentives on the electrophysiological correlates of error processing in major depressive disorder. Cognitive, Affective and Behavioral Neuroscience 10, 119128.CrossRefGoogle ScholarPubMed
Holroyd, CB, Coles, MG (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review 109, 679709.CrossRefGoogle ScholarPubMed
Holroyd, CB, Coles, MGH, Nieuwenhuis, S (2002). Medial prefrontal cortex and error potentials. Science 296, 16101611.CrossRefGoogle ScholarPubMed
Kirkpatrick, T, Joyce, E, Milton, J, Duggan, C, Tyrer, P, Rogers, RD (2007). Altered emotional decision making in prisoners with borderline personality disorder. Journal of Personality Disorders 21, 243261.CrossRefGoogle ScholarPubMed
LeGris, J, van Reekum, R (2006). The neuropsychological correlates of borderline personality disorder and suicidal behaviour. Canadian Journal of Psychiatry 51, 131142.CrossRefGoogle ScholarPubMed
Lenzenweger, MF, Clarkin, JF, Fertuck, EA, Kernberg, OF (2004). Executive neurocognitive functioning and neurobehavioral systems indicators in borderline personality disorder: a preliminary study. Journal of Personality Disorders 18, 421438.CrossRefGoogle ScholarPubMed
Links, PS, Heslegrave, R, van Reekum, R (1999). Impulsivity: core aspect of borderline personality disorder. Journal of Personality Disorders 13, 19.CrossRefGoogle ScholarPubMed
Maurex, L, Zaboli, G, Wiens, S, Asberg, M, Leopardi, R, Ohman, A (2009). Emotionally controlled decision making and a gene variant related to serotonin synthesis in women with borderline personality disorder. Scandinavian Journal of Psychology 50, 510.CrossRefGoogle Scholar
Miltner, WHR, Braun, CH, Coles, MGH (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a ‘generic’ neural system for error detection. Journal of Cognitive Neuroscience 9, 788798.CrossRefGoogle Scholar
Morris, SE, Heerey, EA, Gold, JM, Holroyd, CB (2008). Learning-related changes in brain activity following errors and performance feedback in schizophrenia. Schizophrenia Research 99, 274285.CrossRefGoogle ScholarPubMed
Must, A, Szabo, Z, Bodi, N, Szasz, A, Janka, Z, Keri, S (2006). Sensitivity to reward and punishment and the prefrontal cortex in major depression. Journal of Affective Disorders 90, 209215.CrossRefGoogle ScholarPubMed
Nieuwenhuis, S, Aston-Jones, G, Cohen, JD (2005). Decision making, the P3, and the locus coeruleus–norepinephrine system. Psychological Bulletin 131, 510532.CrossRefGoogle ScholarPubMed
Pietschmann, M, Simon, K, Endrass, T, Kathmann, N (2008). Changes of performance monitoring with learning in older and younger adults. Psychophysiology 45, 559568.CrossRefGoogle ScholarPubMed
Polezzi, D, Sartori, G, Rumiati, R, Vidotto, G, Daum, I (2009). Brain correlates of risky decision making. Neuroimage 49, 18861894.CrossRefGoogle ScholarPubMed
Potts, GF, George, MR, Martin, LE, Barratt, ES (2006). Reduced punishment sensitivity in neural systems of behavior monitoring in impulsive individuals. Neuroscience Letters 397, 130134.CrossRefGoogle ScholarPubMed
Rentrop, M, Backenstrass, M, Jaentsch, B, Kaiser, S, Roth, A, Unger, J, Weisbrod, M, Renneberg, B (2008). Response inhibition in borderline personality disorder: performance in a Go/Nogo task. Psychopathology 41, 5057.CrossRefGoogle Scholar
Ridderinkhof, KR, Ullsperger, M, Crone, EA, Nieuwenhuis, S (2004). The role of the medial frontal cortex in cognitive control. Science 306, 443447.CrossRefGoogle ScholarPubMed
Rolls, ET, Hornak, J, Wade, D, McGrath, J (1994). Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery and Psychiatry 57, 15181524.CrossRefGoogle ScholarPubMed
Ruchsow, M, Walter, H, Buchheim, A, Martius, P, Spitzer, M, Kachele, H, Gron, G, Kiefer, M (2006). Electrophysiological correlates of error processing in borderline personality disorder. Biological Psychology 72, 133140.CrossRefGoogle ScholarPubMed
Ruocco, AC (2005). The neuropsychology of borderline personality disorder: a meta-analysis and review. Psychiatry Research 137, 191202.CrossRefGoogle ScholarPubMed
Santesso, DL, Segalowitz, SJ (2009). The error-related negativity is related to risk taking and empathy in young men. Psychophysiology 46, 143152.CrossRefGoogle ScholarPubMed
Sato, A, Yasuda, A, Ohira, H, Miyawaki, K, Nishikawa, M, Kumano, H, Kuboki, T (2005). Effects of value and reward magnitude on feedback negativity and P300. Neuroreport 16, 407411.CrossRefGoogle ScholarPubMed
Schmahl, CG, Vermetten, E, Elzinga, BM, Bremner, JD (2004). A PET study of memories of childhood abuse in borderline personality disorder. Biological Psychiatry 55, 759765.CrossRefGoogle Scholar
Schmidt, K-H, Metzler, P (1992). Wortschatztest (WST). Beltz Test GmbH: Weinheim.Google Scholar
Schultz, W (2002). Getting formal with dopamine and reward. Neuron 36, 241263.CrossRefGoogle ScholarPubMed
Silk, KR (2000). Borderline personality disorder. Overview of biologic factors. Psychiatric Clinics of North America 23, 6175.CrossRefGoogle ScholarPubMed
Skodol, AE, Siever, LJ, Livesley, WJ, Gunderson, JG, Pfohl, B, Widiger, TA (2002). The borderline diagnosis II: biology, genetics, and clinical course. Biological Psychiatry 51, 951963.CrossRefGoogle ScholarPubMed
Smoski, MJ, Lynch, TR, Rosenthal, MZ, Cheavens, JS, Chapman, AL, Krishnan, RR (2008). Decision making and risk aversion among depressive adults. Journal of Behavior Therapy and Experimental Psychiatry 39, 567576.CrossRefGoogle ScholarPubMed
Steinberg, BJ, Trestman, RL, Siever, LJ (1994). The cholinergic and noradrenergic neurotransmitter systems and affective instability in borderline personality disorder. In Biological and Neurobehavioral Studies of Borderline Personality Disorder (ed. Silk, K. R.), pp. 4162. American Psychiatric Press: Washington, DC.Google Scholar
Tebartz van Elst, L, Hesslinger, B, Thiel, T, Geiger, E, Haegele, K, Lemieux, L, Lieb, K, Bohus, M, Hennig, J, Ebert, D (2003). Frontolimbic brain abnormalities in patients with borderline personality disorder: a volumetric magnetic resonance imaging study. Biological Psychiatry 54, 163171.CrossRefGoogle ScholarPubMed
Wittchen, H-U, Zaudig, M, Fydrich, T (1997). SKID. Strukturiertes Klinisches Interview fuer DSM-IV. Achse I und II. Handanweisung. Hogrefe: Gottingen.Google Scholar
Yeung, N, Sanfey, AG (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience 24, 62586264.CrossRefGoogle ScholarPubMed
Zanarini, MC, Frankenburg, FR, Hennen, J, Reich, DB, Silk, KR (2004). Axis I comorbidity in patients with borderline personality disorder: 6-year follow-up and prediction of time to remission. American Journal of Psychiatry 161, 21082114.CrossRefGoogle ScholarPubMed