Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:51:35.198Z Has data issue: false hasContentIssue false

Disrupted dynamic network reconfiguration of the executive and reward networks in internet gaming disorder

Published online by Cambridge University Press:  25 August 2022

Min Wang
Affiliation:
Center for Cognition and Brain Disorders, School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
Hui Zheng
Affiliation:
Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
Weiran Zhou
Affiliation:
Center for Cognition and Brain Disorders, School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
Bo Yang
Affiliation:
Center for Cognition and Brain Disorders, School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
Lingxiao Wang
Affiliation:
Center for Cognition and Brain Disorders, School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
Shuaiyu Chen
Affiliation:
Center for Cognition and Brain Disorders, School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
Guang-Heng Dong*
Affiliation:
Center for Cognition and Brain Disorders, School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
*
Author for correspondence: Guang-Heng Dong, E-mail: dongguangheng@hznu.edu.cn

Abstract

Background

Studies have shown that people with internet gaming disorder (IGD) exhibit impaired executive control of gaming cravings; however, the neural mechanisms underlying this process remain unknown. In addition, these conclusions were based on the hypothesis that brain networks are temporally static, neglecting dynamic changes in cognitive processes.

Methods

Resting-state fMRI data were collected from 402 subjects [162 subjects with IGD and 240 recreational game users (RGUs)]. The community structure (recruitment and integration) of the executive control network (ECN) and the basal ganglia network (BGN), which represents the reward network, of patients with IGD and RGUs were compared. Mediation effects among the different networks were analyzed.

Results

Compared to RGUs, subjects with IGD had a lower recruitment coefficient within the right ECN. Further analysis showed that only male subjects had a lower recruitment coefficient. Mediation analysis showed that the integration coefficient of the right ECN mediated the relationship between the recruitment coefficients of both the right ECN and the BGN in RGUs.

Conclusions

Male subjects with IGD had a lower recruitment coefficient than RGUs, which impairing their impulse control. The mediation results suggest that top-down executive control of the ECN is absent in subjects with IGD. Together, these findings could explain why subjects with IGD exhibit impaired executive control of gaming cravings; these results have important therapeutic implications for developing effective interventions for IGD.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Alcauter, S., Lin, W., Smith, J. K., Short, S. J., Goldman, B. D., Reznick, J. S., … Gao, W. (2014). Development of thalamocortical connectivity during infancy and its cognitive correlations. Journal of Neuroscience, 34(27), 90679075. doi:10.1523/jneurosci.0796-14.2014.CrossRefGoogle ScholarPubMed
American Psychiatric Association (APA). (2013). Diagnostic and statistical manual of mental disorders: DSM-5™ (5th ed.). USA: American Psychiatric Publishing.Google Scholar
Bassett, D. S., & Mattar, M. G. (2017). A network neuroscience of human learning: Potential to inform quantitative theories of brain and behavior. Trends in Cognitive Sciences, 21(4), 250264. doi:10.1016/j.tics.2017.01.010.CrossRefGoogle ScholarPubMed
Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353364. doi:10.1038/nn.4502.CrossRefGoogle ScholarPubMed
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 76417646. doi:10.1073/pnas.1018985108.CrossRefGoogle ScholarPubMed
Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8(11), 14581463. doi:10.1038/nn1584.CrossRefGoogle ScholarPubMed
Bechara, A., Berridge, K. C., Bickel, W. K., Moron, J. A., Williams, S. B., & Stein, J. S. (2019). A neurobehavioral approach to addiction: Implications for the opioid epidemic and the psychology of addiction. Psychological Science in the Public Interest, 20(2), 96127. doi:10.1177/1529100619860513.CrossRefGoogle ScholarPubMed
Behrens, T. E. J., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A. M., Boulby, P. A., … Matthews, P. M. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), 750757. doi:10.1038/nn1075.CrossRefGoogle ScholarPubMed
Blanco-Hinojo, L., Pujol, J., Harrison, B. J., Macia, D., Batalla, A., Nogue, S., … Martin-Santos, R. (2017). Attenuated frontal and sensory inputs to the basal ganglia in cannabis users. Addiction Biology, 22(4), 10361047. doi:10.1111/adb.12370.CrossRefGoogle Scholar
Brammer, M. J. (1998). Multidimensional wavelet analysis of functional magnetic resonance images. Human Brain Mapping, 6(5–6), 378382. doi:10.1002/(sici)1097-0193(1998)6:5/6<378::Aid-hbm9>3.3.Co;2-z.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Brand, M., Wegmann, E., Stark, R., Muller, A., Wolfling, K., Robbins, T. W., & Potenza, M. N. (2019). The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience and Biobehavioral Reviews, 104, 110. doi:10.1016/j.neubiorev.2019.06.032.CrossRefGoogle ScholarPubMed
Brand, M., Young, K. S., & Laier, C. (2014). Prefrontal control and Internet addiction: A theoretical model and review of neuropsychological and neuroimaging findings. Frontiers in Human Neuroscience, 8, 13. doi:10.3389/fnhum.2014.00375.CrossRefGoogle ScholarPubMed
Cary, R. P., Ray, S., Grayson, D. S., Painter, J., Carpenter, S., Maron, L., … Fair, D. A. (2017). Network structure among brain systems in adult ADHD is uniquely modified by stimulant administration. Cerebral Cortex, 27(8), 39703979. doi:10.1093/cercor/bhw209.Google ScholarPubMed
Cazelles, B., Chavez, M., Berteaux, D., Menard, F., Vik, J. O., Jenouvrier, S., & Stenseth, N. C. (2008). Wavelet analysis of ecological time series. Oecologia, 156(2), 287304. doi:10.1007/s00442-008-0993-2.CrossRefGoogle ScholarPubMed
Chai, L. R., Mattar, M. G., Blank, I. A., Fedorenko, E., & Bassett, D. S. (2016). Functional network dynamics of the language system. Cerebral Cortex, 26(11), 41484159. doi:10.1093/cercor/bhw238.CrossRefGoogle ScholarPubMed
Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 50(1), 8198. doi:10.1016/j.neuroimage.2009.12.011.CrossRefGoogle ScholarPubMed
Chun, J. W., Park, C. H., Kim, J. Y., Choi, J., Cho, H., Jung, D. J., … Choi, I. Y. (2020). Altered core networks of brain connectivity and personality traits in internet gaming disorder. Journal of Behavioral Addictions, 9(2), 298311. doi:10.1556/2006.2020.00014.CrossRefGoogle ScholarPubMed
Crossley, N. A., Mechelli, A., Vertes, P. E., Winton-Brown, T. T., Patel, A. X., Ginestet, C. E., … Bullmore, E. T. (2013). Cognitive relevance of the community structure of the human brain functional coactivation network. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 1158311588. doi:10.1073/pnas.1220826110.CrossRefGoogle ScholarPubMed
Damoiseaux, J. S., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 1384813853. doi:10.1073/pnas.0601417103.CrossRefGoogle ScholarPubMed
Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X. N., Mennes, M., Mairena, M. A., … Milham, M. P. (2011). Aberrant striatal functional connectivity in children with autism. Biological Psychiatry, 69(9), 847856. doi:10.1016/j.biopsych.2010.10.029.CrossRefGoogle ScholarPubMed
Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Shehzad, Z., … Milham, M. P. (2008). Functional connectivity of human Striatum: A resting-state fMRI study. Cerebral Cortex, 18(12), 27352747. doi:10.1093/cercor/bhn041.CrossRefGoogle ScholarPubMed
Dong, G., Li, H., Wang, L., & Potenza, M. N. (2017). Cognitive control and reward/loss processing in Internet gaming disorder: Results from a comparison with recreational Internet game-users. European Psychiatry, 44, 3038. doi:10.1016/j.eurpsy.2017.03.004.CrossRefGoogle ScholarPubMed
Dong, G. H., Lin, X., Hu, Y. B., Xie, C. M., & Du, X. X. (2015). Imbalanced functional link between executive control network and reward network explain the online-game seeking behaviors in Internet gaming disorder. Scientific Reports, 5, 6. doi:10.1038/srep09197.Google ScholarPubMed
Dong, G. H., & Potenza, M. N. (2014). A cognitive-behavioral model of Internet gaming disorder: Theoretical underpinnings and clinical implications. Journal of Psychiatric Research, 58, 711. doi:10.1016/j.jpsychires.2014.07.005.CrossRefGoogle ScholarPubMed
Dong, G. H., Wang, L. X., Du, X. X., & Potenza, M. N. (2018a). Gender-related differences in neural responses to gaming cues before and after gaming: Implications for gender-specific vulnerabilities to Internet gaming disorder. Social Cognitive and Affective Neuroscience, 13(11), 12031214. doi:10.1093/scan/nsy084.CrossRefGoogle ScholarPubMed
Dong, G. H., Wang, M., Zheng, H., Wang, Z. L., Du, X. X., & Potenza, M. N. (2021a). Disrupted prefrontal regulation of striatum-related craving in Internet gaming disorder revealed by dynamic causal modeling: Results from a cue-reactivity task. Psychological Medicine, 51(9), 15491561. doi:10.1017/s003329172000032x.CrossRefGoogle ScholarPubMed
Dong, G. H., Wang, Z. L., Dong, H. H., Wang, M., Zheng, Y. B., Ye, S., … Potenza, M. N. (2020). More stringent criteria are needed for diagnosing internet gaming disorder: Evidence from regional brain features and whole-brain functional connectivity multivariate pattern analyses. Journal of Behavioral Addictions, 9(3), 642653. doi:10.1556/2006.2020.00065.CrossRefGoogle ScholarPubMed
Dong, G. H., Wang, Z. L., Wang, Y. F., Du, X. X., & Potenza, M. N. (2019). Gender-related functional connectivity and craving during gaming and immediate abstinence during a mandatory break: Implications for development and progression of internet gaming disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 88, 110. doi:10.1016/j.pnpbp.2018.04.009.CrossRefGoogle ScholarPubMed
Dong, G. H., Zheng, H., Liu, X. Y., Wang, Y. F., Du, X. X., & Potenza, M. N. (2018b). Gender-related differences in cue-elicited cravings in Internet gaming disorder: The effects of deprivation. Journal of Behavioral Addictions, 7(4), 953964. doi:10.1556/2006.7.2018.118.CrossRefGoogle ScholarPubMed
Dong, H. H., Wang, M., Zhang, J. L., Hu, Y. Z., Potenza, M. N., & Dong, G. H. (2021b). Reduced frontostriatal functional connectivity and associations with severity of Internet gaming disorder. Addiction Biology, 26(4), 9. doi:10.1111/adb.12985.CrossRefGoogle ScholarPubMed
Fortunato, S. (2010). Community detection in graphs. Physics Reports-Review Section of Physics Letters, 486(3–5), 75174. doi:10.1016/j.physrep.2009.11.002.Google Scholar
Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 1336. doi:10.1089/brain.2011.0008.CrossRefGoogle ScholarPubMed
Gifford, G., Crossley, N., Kempton, M. J., Morgan, S., Dazzan, P., Young, J., & McGuire, P. (2020). Resting-state fMRI-based multilayer network configuration in patients with schizophrenia. Neuroimage-Clinical, 25, 13. doi:10.1016/j.nicl.2020.102169.CrossRefGoogle ScholarPubMed
Good, B. H., de Montjoye, Y. A., & Clauset, A. (2010). Performance of modularity maximization in practical contexts. Physical Review E, 81(4), 19. doi:10.1103/PhysRevE.81.046106.CrossRefGoogle ScholarPubMed
Han, X., Wu, X. W., Wang, Y., Sun, Y. W., Ding, W. N., Cao, M. Q., … Zhou, Y. (2018). Alterations of resting-state static and dynamic functional connectivity of the dorsolateral prefrontal cortex in subjects with internet gaming disorder. Frontiers in Human Neuroscience, 12, 10. doi:10.3389/fnhum.2018.00041.CrossRefGoogle ScholarPubMed
Handwerker, D. A., Roopchansingh, V., Gonzalez-Castillo, J., & Bandettini, P. A. (2012). Periodic changes in fMRI connectivity. Neuroimage, 63(3), 17121719. doi:10.1016/j.neuroimage.2012.06.078.CrossRefGoogle ScholarPubMed
Hayes, A. F. (2012). PROCESS: A versatile computational tool for mediation, moderation, and conditional process Analysis.Google Scholar
He, X. S., Bassett, D. S., Chaitanya, G., Sperling, M. R., Kozlowski, L., & Tracy, J. I. (2018). Disrupted dynamic network reconfiguration of the language system in temporal lobe epilepsy. Brain, 141, 13751389. doi:10.1093/brain/awy042.CrossRefGoogle ScholarPubMed
He, Y., Lim, S., Fortunato, S., Sporns, O., Zhang, L., Qiu, J., … Zuo, X. N. (2018). Reconfiguration of cortical networks in MDD uncovered by multiscale community detection with fMRI. Cerebral Cortex, 28(4), 13831395. doi:10.1093/cercor/bhx335.CrossRefGoogle ScholarPubMed
Hu, Y. Z., Salmeron, B. J., Gu, H., Stein, E. A., & Yang, Y. H. (2015). Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry, 72(6), 584592. doi:10.1001/jamapsychiatry.2015.1.CrossRefGoogle ScholarPubMed
Kim, D. J., Kim, K., Lee, H. W., Hong, J. P., Cho, M. J., Fava, M., … Jeon, H. J. (2017). Internet game addiction, depression, and escape from negative emotions in adulthood a nationwide community sample of Korea. Journal of Nervous and Mental Disease, 205(7), 568573. doi:10.1097/nmd.0000000000000698.CrossRefGoogle ScholarPubMed
Kim, O. (2001). Sex differences in social support, loneliness, and depression among Korean college students. Psychological Reports, 88(2), 521526. doi:10.2466/pr0.88.2.521-526.CrossRefGoogle ScholarPubMed
Laconi, S., Pires, S., & Chabrol, H. (2017). Internet gaming disorder, motives, game genres and psychopathology. Computers in Human Behavior, 75, 652659. doi:10.1016/j.chb.2017.06.012.CrossRefGoogle Scholar
Lerman-Sinkoff, D. B., & Barch, D. M. (2016). Network community structure alterations in adult schizophrenia: Identification and localization of alterations. Neuroimage-Clinical, 10, 96106. doi:10.1016/j.nicl.2015.11.011.CrossRefGoogle ScholarPubMed
Liu, S., Wang, S. C., Zhang, M., Xu, Y., Shao, Z. Q., Chen, L. M., … Yuan, K. (2021). Brain responses to drug cues predict craving changes in abstinent heroin users: A preliminary study. Neuroimage, 237, 9. doi:10.1016/j.neuroimage.2021.118169.CrossRefGoogle ScholarPubMed
Lord, A., Horn, D., Breakspear, M., & Walter, M. (2012). Changes in community structure of resting state functional connectivity in unipolar depression. PLoS One, 7(8), 15. doi:10.1371/journal.pone.0041282.CrossRefGoogle ScholarPubMed
Ma, S. S., Worhunsky, P. D., Xu, J. S., Yip, S. W., Zhou, N., Zhang, J. T., … Fang, X. Y. (2019). Alterations in functional networks during cue-reactivity in Internet gaming disorder. Journal of Behavioral Addictions, 8(2), 277287. doi:10.1556/2006.8.2019.25.CrossRefGoogle ScholarPubMed
McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. Journal of Neuroscience, 27(21), 57965804. doi:10.1523/jneurosci.4246-06.2007.CrossRefGoogle ScholarPubMed
Medaglia, J. D., Lynall, M. E., & Bassett, D. S. (2015). Cognitive network neuroscience. Journal of Cognitive Neuroscience, 27(8), 14711491. doi:10.1162/jocn_a_00810.CrossRefGoogle ScholarPubMed
Monterosso, J., Piray, P., & Luo, S. (2012). Neuroeconomics and the study of addiction. Biological Psychiatry, 72(2), 107112. doi:10.1016/j.biopsych.2012.03.012.CrossRefGoogle Scholar
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J. P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science (New York, N.Y.), 328(5980), 876878. doi:10.1126/science.1184819.CrossRefGoogle ScholarPubMed
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 85778582. doi:10.1073/pnas.0601602103.CrossRefGoogle ScholarPubMed
Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 15. doi:10.1103/PhysRevE.69.026113.Google ScholarPubMed
Noel, X., Brevers, D., & Bechara, A. (2013). A neurocognitive approach to understanding the neurobiology of addiction. Current Opinion in Neurobiology, 23(4), 632638. doi:10.1016/j.conb.2013.01.018.CrossRefGoogle ScholarPubMed
Pan, Y. C., Chiu, Y. C., & Lin, Y. H. (2020). Systematic review and meta-analysis of epidemiology of internet addiction. Neuroscience and Biobehavioral Reviews, 118, 612622. doi:10.1016/j.neubiorev.2020.08.013.CrossRefGoogle ScholarPubMed
Petry, N. M., Zajac, K., & Ginley, M. K. (2018). Behavioral addictions as mental disorders: To be or not to be? In Widiger, T. & Cannon, T. D. (Eds.), Annual review of clinical psychology (Vol. 14, pp. 399423). Palo Alto: Annual Reviews.Google Scholar
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665678. doi:10.1016/j.neuron.2011.09.006.CrossRefGoogle ScholarPubMed
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (MINI): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59, 2233. doi:10.4088/JCP.09m05305whi.Google ScholarPubMed
Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22(1), 158165. doi:10.1093/cercor/bhr099.CrossRefGoogle ScholarPubMed
Sioni, S. R., Burleson, M. H., & Bekerian, D. A. (2017). Internet gaming disorder: Social phobia and identifying with your virtual self. Computers in Human Behavior, 71, 1115. doi:10.1016/j.chb.2017.01.044.CrossRefGoogle Scholar
Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biology, 7(7), 15. doi:10.1371/journal.pbio.1000157.CrossRefGoogle ScholarPubMed
Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science (New York, N.Y.), 352(6282), 216220. doi:10.1126/science.aad8127.CrossRefGoogle ScholarPubMed
Volkow, N. D., Fowler, J. S., Wang, G. J., Telang, F., Logan, J., Jayne, M., … Swanson, J. M. (2010). Cognitive control of drug craving inhibits brain reward regions in cocaine abusers. Neuroimage, 49(3), 25362543. doi:10.1016/j.neuroimage.2009.10.088.CrossRefGoogle ScholarPubMed
Wang, J. H., Zuo, X. N., Dai, Z. J., Xia, M. R., Zhao, Z. L., Zhao, X. L., … He, Y. (2013). Disrupted functional brain connectome in individuals at risk for Alzheimer's disease. Biological Psychiatry, 73(5), 472481. doi:10.1016/j.biopsych.2012.03.026.CrossRefGoogle ScholarPubMed
Wang, M., Dong, H. H., Zheng, H., Du, X. X., & Dong, G. H. (2020). Inhibitory neuromodulation of the putamen to the prefrontal cortex in Internet gaming disorder: How addiction impairs executive control. Journal of Behavioral Addictions, 9(2), 312324. doi:10.1556/2006.2020.00029.CrossRefGoogle Scholar
Wang, Y. F., Wu, L. D., Zhou, H. L., Lin, X., Zhang, Y. F., Du, X. X., & Dong, G. H. (2017). Impaired executive control and reward circuit in Internet gaming addicts under a delay discounting task: Independent component analysis. European Archives of Psychiatry and Clinical Neuroscience, 267(3), 245255. doi:10.1007/s00406-016-0721-6.CrossRefGoogle Scholar
Weinstein, A., & Lejoyeux, M. (2020). Neurobiological mechanisms underlying internet gaming disorder. Dialogues in Clinical Neuroscience, 22(2), 113126. doi:10.31887/DCNS.2020.22.2/aweinstein.CrossRefGoogle ScholarPubMed
Widyanto, L., & McMurran, M. (2004). The psychometric properties of the Internet addiction test. Cyberpsychology & Behavior, 7(4), 443450. doi:10.1089/cpb.2004.7.443.CrossRefGoogle ScholarPubMed
Xie, C., Shao, Y., Ma, L., Zhai, T., Ye, E., Fu, L., … Li, S. J. (2014). Imbalanced functional link between valuation networks in abstinent heroin-dependent subjects. Molecular Psychiatry, 19(1), 1012. doi:10.1038/mp.2012.169.CrossRefGoogle ScholarPubMed
Yen, J. Y., Liu, T. L., Wang, P. W., Chen, C. S., Yen, C. F., & Ko, C. H. (2017). Association between Internet gaming disorder and adult attention deficit and hyperactivity disorder and their correlates: Impulsivity and hostility. Addictive Behaviors, 64, 308313. doi:10.1016/j.addbeh.2016.04.024.CrossRefGoogle ScholarPubMed
Zhang, J. W., Zhou, H., Geng, F. J., Song, X. L., & Hu, Y. Z. (2021). Internet gaming disorder increases mind-wandering in young adults. Frontiers in Psychology, 11, 10. doi:10.3389/fpsyg.2020.619072.CrossRefGoogle ScholarPubMed
Zheng, H., Hu, Y. B., Wang, Z. L., Wang, M., Du, X. X., & Dong, G. H. (2019). Meta-analyses of the functional neural alterations in subjects with Internet gaming disorder: Similarities and differences across different paradigms. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 94, 17. doi:10.1016/j.pnpbp.2019.109656.CrossRefGoogle ScholarPubMed
Zheng, H. N., Li, F., Bo, Q. J., Li, X. B., Yao, L., Yao, Z. J., … Wu, X. (2018). The dynamic characteristics of the anterior cingulate cortex in resting-state fMRI of patients with depression. Journal of Affective Disorders, 227, 391397. doi:10.1016/j.jad.2017.11.026.CrossRefGoogle ScholarPubMed
Zhou, W. R., Zhang, Z. J., Yang, B., Zheng, H., Du, X. X., & Dong, G. H. (2021). Sex difference in neural responses to gaming cues in Internet gaming disorder: Implications for why males are more vulnerable to cue-induced cravings than females. Neuroscience Letters, 760, 10. doi:10.1016/j.neulet.2021.136001.CrossRefGoogle ScholarPubMed
Zimmermann, K., Yao, S. X., Heinz, M., Zhou, F., Dau, W., Banger, M., … Becker, B. (2018). Altered orbitofrontal activity and dorsal striatal connectivity during emotion processing in dependent marijuana users after 28 days of abstinence. Psychopharmacology, 235(3), 849859. doi:10.1007/s00213-017-4803-6.CrossRefGoogle ScholarPubMed
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material

Download Wang et al. supplementary material(File)
File 565.4 KB