Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T03:09:48.677Z Has data issue: false hasContentIssue false

Biological component of the NIMH Clinical Research Branch Collaborative Program on the psychobiology of depression: I. Background and theoretical considerations

Published online by Cambridge University Press:  09 July 2009

Stephen H. Koslow
Affiliation:
Clinical Research Branch, National Institute of Mental Health, Rockville, Maryland, USA.
John M. Davis
Affiliation:
Illinois State Psychiatric Institute, Chicago, Illinois, USA.
Martin M. Katz
Affiliation:
Clinical Research Branch, National Institute of Mental Health, Rockville, Maryland, USA.
Joseph Mendels
Affiliation:
Affective Diseases Research Unit, Veterans Administration Hospital, Philadelphia, Pennsylvania, USA.
Eli Robins
Affiliation:
Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA.
Peter E. Stokes
Affiliation:
Psychoendocrine Study Unit, The New York Hospital, Cornell Medical Center, New York, New York, USA.
Charles L. Bowden
Affiliation:
Department of Psychiatry, The University of Texas Health Science Center, San Antonio, Texas, USA.

Synopsis

There are many reports which suggest that patients with affective illness (mania and/or depression) have abnormalities in the functioning of one or more neurobiological systems. At a conference convened by the Clinical Research Branch, Division of Extramural Research Programs, National Institute of Mental Health, these findings were reviewed and some of the factors impeding movement towards a more complete and integrated view of the functioning of neurobiological systems in patients with mania or depression were identified. As a result, a multi-research centre, collaborative approach to the study of the psychobiology of affective disorders was developed. In this collaborative programme, which has now been underway for several years, the focus has been upon: (a) the assessment of the functioning of several different types of biological systems in the same patient, both before and during treatment; (b) obtaining a reasonably large number of patients and comparison subjects; and (c) the use within and across centres of standardized diagnostic categories and behavioural rating methodologies. In this paper the history, background, and rationale for this collaborative effort are reviewed. Those biological systems chosen for study are noted, and issues such as reliability and validity of diagnoses, measurement of state variables, assessment of change with treatment, and logistical and coordinating problems are discussed.

Type
Research Report
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, W. M. & Dawson, J. (1963). Verbally retarded depression and sodium metabolism. British Journal of Psychiatry 109, 225230.CrossRefGoogle ScholarPubMed
Ashcroft, G. W., Eccleston, D., Crawford, T. B. B., Sharman, D. F., MacDougal, E. J., Stanton, J. B. & Binns, J. K. (1966). 5-Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases.Lancer ii, 10491052.CrossRefGoogle Scholar
Beck, A. (1972). Depression: Causes and Treatment. University of Pennsylvania Press: Philadelphia.Google Scholar
Beckmann, H. & Goodwin, F. K. (1975). Antidepressant response to tricyclics and urinary MHPG in unipolar patients. Archives of General Psychiatry 32, 1721.CrossRefGoogle ScholarPubMed
Berger, P. A., Faull, K., Davis, K.L. & Barchas, J. (1979). Monoamine metabolites in CSF in psychiatric disorders.in Catecholamines: Basic and Clinical Frontiers Vol. 2 (ed. Usdin, E., Kopin, I. J. and Barchas, J.), pp. 18271829. Pergamon Press: New York.Google Scholar
Birkmayer, W. & Riedgrer, P. (1975). Biochemical postmortem findings in depressed patients. Journal of Neural Transmission 37, 95107.CrossRefGoogle ScholarPubMed
Boggs, C., Katz, M. M. & McDonald-Scott, P. (1976), Expressive bodily movement scale. Unpublished experimental scales.Google Scholar
Bond, P. A., Jenner, F. A. & Sampson, G. A. (1972). Daily variations of the urine content of MHPG in two manic-depressive patients. Psychological Medicine 2, 8185.CrossRefGoogle Scholar
Bourne, H. R., Bunney, W. E. Jr, Colburn, R. W., Davis, J. M., Davis, J. N., Shaw, D. M. & Coppen, A. J. (1968). Noradrenaline, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid in hindbrains of suicidal patients. Lancet ii, 805808.CrossRefGoogle Scholar
Bowers, M. (1974). Lumbar CSF, 5-hydroxyindoleacetic acid and homovanillic acid in affective syndromes. Journal of Nervous and Mental Disorders 158, 325330.CrossRefGoogle ScholarPubMed
Brown, W. A., Johnston, R. G. & Mayfield, D. (1979). The 24-hour dexamethasone suppression test in a clinical setting: relationship to diagnosis, symptoms, and response to treatment. American Journal of Psychiatry 136, 543545.CrossRefGoogle Scholar
Bunney, W. E. Jr & Davis, J. M. (1965). Norepinephrine in depressive reactions. Archives of General Psychiatry 13, 483494.CrossRefGoogle ScholarPubMed
Burdock, E. I., Hakerem, G., Hardesty, A. S. & Zubin, J. (1960). A ward behavior rating scale for use with mental hospital patients. Journal of Clinical Psychology 16, 246247.3.0.CO;2-Y>CrossRefGoogle Scholar
Carroll, B. J. (1972 a). Plasma cortisol levels in depression. In Depressive Illness: Some Research Studies (ed. Davies, B., Carroll, B. J. and Mowbray, R. M.), pp. 2368. C. C. Thomas: Springfield, Illinois.Google Scholar
Carroll, B. J. (1972 b). Sodium and potassium transfer to cerebrospinal fluid in severe depression. In Depressive Illness: Some Research Studies (ed. Davis, B., Carroll, B. J. and Mowbray, R. M.), pp. 247260. C. C. Thomas:Springfield, Illinois.Google Scholar
Carroll, B. J. (1976). Limbic system – adrenal cortex regulation in depression and schizophrenia. Psychosomatic Medicine 38, 106121.CrossRefGoogle ScholarPubMed
Carroll, B. J., Curtis, G. C. & Mendels, J. (1976 a). Neuroendocrine regulation in depression. I. Limbic system – adrenocortical dysfunction. Archives of General Psychiatry 33, 10391044.Google Scholar
Carroll, B. J., Curtis, G. C. & Mendels, J. (1976 b). Neuroendocrine regulation in depression. II. Discrimination of depressed from non-depressed patients. Archives of General Psychiatry 33, 10511058.CrossRefGoogle Scholar
Ching, J., Katz, M. M. & Sanborn, K. O. (1975). C–K–S Video Interview Rating Scale. Unpublished manuscript.Google Scholar
Coppen, A. (1972). Indoleamines and affective disorders. Journal of Psychiatric Research 9, 163171.Google Scholar
Coppen, A. & Shaw, D. M. (1963). Mineral metabolism in melancholia. British Medical Journal ii, 14391444.CrossRefGoogle Scholar
Coppen, A. & Shaw, D. M. (1967). The distribution of electrolytes and water in patients after taking lithium carbonate. Lancet ii, 805806.Google Scholar
Coppen, A., Shaw, D. M., Malleson, A. & Costain, R. (1966). Mineral metabolism in mania. British Medical Journal i, 7175.CrossRefGoogle Scholar
Costa, E., Gessa, G. L. & Sandler, M. (eds.) (1974). Serotonin new vistas: biochemical and behavioral and clinical studies. In Advances in Biochemical Psychopharmacology Vol. 2. Raven Press: New York.Google Scholar
Crews, F. T. & Smith, C. B. (1978). Presynaptic alphareceptor subsensitivity after long-term antidepressant treatment. Science 202, 322324.Google Scholar
DeLeon-Jones, F., Maas, J. W., Dekirmenjian, H. & Sanchez, J. (1975). Diagnostic subgroups of affective disorders and their urinary excretion of catecholamine metabolites. American Journal of Psychiatry 132, 11411148.Google Scholar
Dencker, S. J., Malm, U., Roos, B.-E. & Werdinius, B. (1966). Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania. Journal of Neurochemistry 13, 15451548.Google Scholar
Derogatis, L. R., Lipman, R. S., Rickels, K., Uhlenhuth, E. H. & Covi, L. (1974). The Hopkins Symptom Checklist(HSCL): a measure of primary symptom dimensions. In Psychological Measurements in Psychopharmacology: Modern Problems in Pharmacopsychiatry Vol. 7 (ed. Pichot, P.), pp. 79110. S. Karger: Basel.Google Scholar
Dorus, E., Pandey, G. N. & Davis, J. M. (1975). Genetic determination of lithium ion distribution: an in vitro and in vitro monozygotic–dyzgotic twin study. Archives of General Psychiatry 32, 10971102.CrossRefGoogle Scholar
Ebert, M. H., Post, R. M. & Goodwin, F. K. (1972). Effect of physical activity on urinary MHPG excretion in depressed patients (letter). Lancet ii, 766.Google Scholar
Ekman, P. & Friesen, W. V. (1974). Non-verbal behavior and psychopathology. In The Psychology of Depression: Contemporary Theory and Research (ed. Friedman, R. J. and Katz, M. M.), pp. 203224. Winston: Washington, D.C.Google Scholar
Ettigi, P. G. & Brown, G. M. (1978). Differential pituitary responses in subtypes of depression. Scientific Proceedings of the 9th Congress of Psychoneuroendocrinology 33, no. 817.Google Scholar
Fawcett, J., Maas, J. W. & Dekirmenjian, H. (1972). Depression and MHPG excretion: response to dextroamphetamine and tricyclic antidepressants. Archives of General Psychiatry 26, 246251.Google Scholar
Feighner, J. P., Robins, E., Guze, S. B., Woodruff, R. A., Winokur, G. & Munoz, R. (1972). Diagnostic criteria for use in psychiatric research. Archives of General Psychiatry 26, 5763.Google Scholar
Fleiss, J. L. (1973). Statistical Methods for Rates and Proportions. John Wiley & Sons: New York.Google Scholar
Garfinkel, P. E., Warsh, J. J., Stancer, H. C. & Godse, D. D. (1977). CNS monoamine metabolism in bipolar affective disorder. Archives of General Psychiatry 34, 735739.Google Scholar
Gibbons, J. L. (1960). Total body sodium and potassium in depressive illness. Clinical Science 19, 133138.Google Scholar
Glen, A. I. M., Ongley, G. C. & Robinson, K. (1968). Diminished membrane transport in manic-depressive psychosis and recurrent depression. Lancet ii, 241243.Google Scholar
Goode, D. J., Dekirmenjian, H., Meltzer, H. Y. & Maas, J. W. (1973). Relation of exercise to MHPG excretion in normal subjects. Archives of General Psychiatry 29, 391396.Google Scholar
Goodwin, F. K. & Potter, W. Z. (1979). Norepinephrine metabolite studies in affective illness. In Catecholamines: Basic and Clinical Frontiers Vol. 2 (ed. Usdin, E., Kopin, I. J. and Barchas, J.), pp. 18631865. Pergamon Press: New York.CrossRefGoogle Scholar
Goodwin, F. K., Brodie, H. K. H., Murphy, D. L. & Bunney, W. E. Jr (1970). L-Dopa, catecholamines and behavior: a clinical and biochemical study in depressed patients. Biological Psychiatry 2, 341366.Google Scholar
Greenspan, J., Schildkraut, J. J., Gordon, E. K., Baer, L., Aronoff, M. S. & Durell, J. (1970). Catecholamine metabolism in affective disorders. III. 3-Methoxy- 4-hydroxyphenylglycol and other catecholamine metabolites in patients with lithium carbonate. Journal of Psychiatric Research 7, 171183.Google Scholar
Grinker, R. R., Miller, J., Sabshin, M., Nunn, R. J. & Nunnally, J. C. (1961). The Phenomena of Depression. Hoeber: New York.Google Scholar
Gruen, P. H., Sachar, E. J., Altman, N. & Sassin, J. (1975). Growth hormone responses to hypoglycemia in post-menopausal depressed women. Archives of General Psychiatry 32, 3133.Google Scholar
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry 23, 5662.Google ScholarPubMed
Hamilton, M. (1967). Development of a rating scale for primary depressive illness. British Journal of Social and Clinical Psychology 6, 278296.CrossRefGoogle ScholarPubMed
Jacobsen, E. (1964). The theoretical basis of the chemotherapy of depression. In Depression: Proceedings of the symposium held at Cambridge,22–26 September 1959 (ed. Davies, E. B.), pp. 208213. Cambridge University Press: Cambridge.Google Scholar
Jones, F., Maas, J. W., Dekirmenjian, H. & Fawcett, J. A. (1973). Urinary catecholamine metabolites during behavioral changes in a patient with manic depressive cycles. Science 179, 300302.CrossRefGoogle Scholar
Katz, M. M. & Hirschfeld, R. (1978). Phenomenology and classification of depression. In Psychopharmacology: A Generation of Progress (ed. Lipton, M. A., DiMascio, A. and Killam, K. F.), pp. 11851196. Raven Press: New York.Google Scholar
Katz, M. M. & Itil, T. M. (1974). Video methodology for research in psychopathology and psychopharmacology. Archives of General Psychiatry 31, 204210.Google Scholar
Katz, M. M., Secunda, S. K., Hirschfeld, R. M. A. & Koslow, S. H. (1979). NIMH Clinical Research Collaborative Program on the Psychobiology of Depression. Archives of General Psychiatry 36, 765771.Google Scholar
King, H. E. (1972). Tests of motility relevant to the affective disorders: Special Report for the Clinical Research Branch of NIMH. Unpublished manuscript.Google Scholar
Klein, R. & Nunn, R. F. (1945). Clinical and biochemical analysis of case of manic-depressive psychosis showing regular weekly cycles. Journal of Mental Science 91, 7988.Google Scholar
Krieger, D. T. (1973). Neurotransmitter regulation of ACTH release. Mount Sinai Journal of Medicine 40, 302314.Google Scholar
Leonhard, K., (1957). Aufteilung der Endogenen Psychosen (first edn). Akademie-Verlag: Berlin.Google Scholar
Leonhard, K. (1979). The Classification of Endogenous Psychoses (5th edn) (ed. Robins, E.; trans. Berman, R.). lrvington Press: New York.Google Scholar
Leonhard, K., Korff, I. & Schulz, H. (1962). Die Temperament in den Familien der monopolaren und bipolaren phasischen Psychosen. Psychiatria neurologia 143, 416434.Google Scholar
Lloyd, K. G., Farley, I. J., Deck, J. H. N. & Hornykiewicz, O. (1974). Serotonin and 5-hydroxyindoleacetic acid in discrete areas of the brainstem of suicide victims and control patients. In Advances in Biochemical Psychopharmacology Vol. 2 (ed. Costa, A., Gessa, G. L. and Sandler, M.), pp. 387397. Raven Press: New York.Google Scholar
Lorenzen, L. C. & Ganong, W. F. (1967). Effect of drugs related to alpha-ethyltryptamine on stress-induced ACTH secretion in the dog. Endocrinology 80, 889892.CrossRefGoogle ScholarPubMed
Lorr, M., Sonn, T. M. & Katz, M. M. (1967). Toward a definition of depression. Archives of General Psychiatry 17, 183186.Google Scholar
Lyttkens, L., Soderberg, U. & Wetterberg, L. (1973). Increased lithium erythrocyte–plasma ratio in manic-depressive psychosis. Lancet i, 40.CrossRefGoogle Scholar
Maas, J. W. (1972). Adrenocortical steroid hormones, electrolytes, and the disposition of the catecholamines – a review. Journal of Psychiatric Research 9, 227241.Google Scholar
Maas, J. W. (1975). Biogenic amines and depression. Archives of General Psychiatry 32, 13571361.Google Scholar
Maas, J. W. & Garver, D. (1975). Linkages of basic neuropharmacology and clinical pharmacology. In American Handbook of Psychiatry (ed. Hamburg, D. A. and Brodie, H. K. H.), pp. 427459. Basic Books: New York.Google Scholar
Maas, J. W., Fawcett, J. A. & Dekirmenjian, H. (1968). 3-Methoxy-4-hydroxyphenylglycol (MHPG) excretion in depressive states. Archives of General Psychiatry 19, 129134.CrossRefGoogle Scholar
Maas, J. W., Fawcett, J. A. & Dekirmenjian, H. (1972). Catecholamine metabolism, depressive illness, and drug response. Archives of General Psychiatry 26, 252262.Google Scholar
Mendels, J. & Frazer, A. (1973). Intracellular lithium concentration and clinical response towards a membrane theory of depression. Journal of Psychiatric Research 10,918.CrossRefGoogle ScholarPubMed
Mendels, J. & Frazer, A. (1974). Alterations in cell membrane activity in depression. American Journal of Psychiatry 131, 12401246.Google Scholar
Mendels, J., Frazer, A., Fitzgerald, R. G., Ramsey, T. A. & Stokes, J. W. (1972). Biogenic amine metabolites in cerebrospinal fluid of depressed and manic patients. Science 175, 13801382.CrossRefGoogle ScholarPubMed
Mendels, J., Stinett, J. L., Burns, D. & Frazer, A. (1975). Amine precursors and depression. Archives of General Psychiatry 32, 2230.Google Scholar
Moberg, G. P., Scapagnini, U., de, Groot J. & Ganong, W. F. (1971). Effect of sectioning the fornix on diurnal fluctuation in plasma corticosterone levels in the rat. Neuroendocrinology 7, 1115.CrossRefGoogle Scholar
Moses, S. & Robins, E. (1975). Regional distribution of norepinephrine and dopamine in brains of depressive suicides and alcoholic suicides. Psychopharmacology Communications 1(3), 327337.Google ScholarPubMed
Muller, E. E. (1973). Nervous control of growth hormone secretion. Neuroendocrinology 11, 338369.Google Scholar
Murphy, D. L., Baker, M., Goodwin, F. K. & Bunney, W. E. (1974).L-Tryptophan in affective disorders. Indoleamine changes and differential clinical effects. Psychopharmacologia 34, 1120.CrossRefGoogle ScholarPubMed
Murphy, D. L., Pickar, D. & Alterman, I. S. (1980). Methods for the quantitative assessment of depressive and manic behavior. In Quantitative Techniques for the Evaluation of the Behavior of Psychiatric Patients (ed. Burdock, E. I., Sudilovsky, A. and Gershon, S.). Marcel-Dekker: New York (in the press).Google Scholar
Naylor, G. J., McNamee, H. B. & Moody, J. P. (1970 a). Erythrocyte sodium and potassium in depressive illness. Journal of Psychosomatic Research 14, 173177.Google Scholar
Naylor, G. J., McNamee, H. B. & Moody, J. P. (1970 b). The plasma control of erythrocyte sodium and potassium metabolism in depressive illness. Journal of Psychosomatic Research 14, 179186.Google Scholar
Ostrow, D. G., Pandey, G. N., Davis, J. M., Hurt, S. W. & Tosteson, D. C. (1978). A heritable disorder of lithium transport in erythrocytes of a subpopulation of manicdepressive patients. American Journal of Psychiatry 135, 10701078.Google Scholar
Overall, J. E. (1962). Dimensions of manifest depression. Psychiatric Research 1, 239245.Google Scholar
Pare, C. M. B., Young, D. P. H., Price, K. & Stacey, R. S. (1969). 5-Hydroxy-tryptamine, noradrenaline, and dopamine in brainstem, hypothalamus and caudate nucleus of controls and of patients committing suicide by coal-gas poisoning. Lancet ii, 133.Google Scholar
Pickar, D., Sweeney, D. R., Maas, J. W. & Heninger, G. R. (1978). Primary affective disorder, clinical state change and MHPG excretion: a longitudinal study. Archives of General Psychiatry 35(12), 13781383.Google Scholar
Post, R. M., Gordon, E. K., Goodwin, F. K. & Bunney, W. E. Jr (1973). Central norepinephrine metabolism in affective illness: MHPG in the cerebrospinal fluid. Science 179, 10021003.Google Scholar
Post, R. M., Stoddard, F. J., Gillin, J. C., Buchsbaum, M., Runkle, D. C., Black, R. E. & Bunney, W. E. Jr (1977).Slow and rapid alterations in motor activity, sleep and biochemistry in a cycling manic-depressive patient. Archives of General Psychiatry 34, 470477.Google Scholar
Raskin, A., Schulterbrandt, J. G., Reatig, N. & McKeon, J. J. (1969). Replication of factors of psychopathology in interview, ward behavior, and self-ratings of hospitalized depressives. Journal of Nervous and Mental Disease 148, 8798.CrossRefGoogle Scholar
Rey, J. H., Wilcox, D. R. C., Gibbons, J. L., Tail, H. & Lewis, D. J. (1961). Serial biochemical and endocrine investigations in recurrent mental illness. Journal of Psychosomatic Research 5, 155169.Google Scholar
Robins, E. & Guze, S. B. (1971). Classification of affective disorders: the primary–secondary, the endogenous–reactive, and the neurotic–psychotic concepts. In Recent Advances in the Psychobiology of the Depressive Illnesses (ed. Williams, T. A., Katz, M. M. and Shield, J. A. Jr), pp. 283293. DHEW Publication 70–9053. US Government Printing Office: Washington, D.C.Google Scholar
Robins, E., Gentry, K. A., Munoz, R. A. & Marten, S. (1977). Study and 18-month follow-up of 314 psychiatric emergency room patients: a contrast of the three common illnesses with the ten less common. III. Findings at follow-up. Archives of General Psychiatry 34, 285291.Google Scholar
Roffman, M., Kling, M. A., Cassens, G., Orsulak, P. J., Reigle, T. G. & Schildkraut, J. J. (1977). The effects of acute and chronic administration of tricyclic anti-depressants on MHPG-SO4 in rat brain. Communications in Psychopharmacology 1, 195206.Google ScholarPubMed
Roos, B.-E. & Sjostrom, R. (1969). 5-Hydroxyindoleacetic acid (and homovanillic acid) levels in the cerebrospinal fluid after probenecid application in patients with manic depressive psychosis. Phamacologia clinica 1, 153155.Google Scholar
Russell, G. F. M. (1960). Body weight and balance of water, sodium and potassium in depressed patients given electroconvulsive therapy. Clinical Science 19, 327336.Google Scholar
Sacchetti, E., Smeraldi, E., Allaria, E., Cagnasso, M. &Biondi, P. A. (1977). A collaborative study. In Mass Spectrometry in Drug Metabolism (ed. Frigerio, A. and Ghisalberti, E. L.), pp. 215224, Plenum Press: New York.Google Scholar
Sachar, E. J., Hellman, L., Roffward, H. P., Halpern, F. S., Fukushima, D. K. & Gallagher, T. F. (1973). Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Archives of General Psychiatry 28, 1924.CrossRefGoogle ScholarPubMed
Scapagnini, U. & Preziosi, P. (1973). Receptor involvement in the central noradrenergic inhibition of ACTH secretion in the rat. Neuropharmacology 12, 5762.CrossRefGoogle ScholarPubMed
Scapagnini, U., Moberg, G. P., Van Loon, G. R., de Groot, J. & Ganong, W. F. (1971). Relation of brain 5-hydroxy-tryptamine content to the diurnal variation in plasma corticosterone in the rat. Neuroendocrinology 7, 9096.CrossRefGoogle Scholar
Scapagnini, U., Van Loon, G. R., Moberg, G. P., Preziosi, P. & Ganong, W. F. (1972). Evidence for central nor-epinephrine-mediated inhibition of ACTH secretion in the rat. Neuroendocrinology 10, 155160.CrossRefGoogle ScholarPubMed
Schildkraut, J. J. (1973). Norepinephrine metabolites as biochemical criteria for classifying depressive disorders and predicting responses to treatment: preliminary findings. American Journal of Psychiatry 130, 695698.CrossRefGoogle ScholarPubMed
Schildkraut, J. J. & Kety, S. S. (1967). Riogenic amines and emotion. Science 156, 2130.Google Scholar
Schildkraut, J. J., Winokur, A. & Applegate, C. W. (1970). Norepinephrine turnover and metabolism in rat brain after long-term administration of imipramine. Science 168, 867869.Google Scholar
Schildkraut, J. J., Keeler, B. A., Papousek, M. & Hartmann, E. (1973). MHPG excretion in depressive disorders: relation to clinical subtypes and desynchronized sleep. Science 181, 762764.Google Scholar
Schlesser, M. A., Winokur, G. & Sherman, B. M. (1979). Genetic subtypes of unipolar primary depressive illness distinguished by hypothalmic–pituitary–adrenal axis activity. Lancet i, 739741.CrossRefGoogle Scholar
Secunda, S., Koslow, S., Redmond, D. E. Jr, Garver, D., Ramsey, A., Croughan, J., Kocsis, J., Hanin, I., Lieberman, K. & Casper, R. (1980). Biological component of the NIMH Clinical Research Branch Collaborative Program on the Psychobiology of Depression. II. Methodology and data analysis. Psychological Medicine 10, 771793.Google Scholar
Segal, D. S., Kuczenski, R. & Mandell, A. J. (1974). Theoretical implications of drug-induced adaptive regulation for a biogenic amine hypothesis of affective disorder. Biological Psychiatry 9, 147159.Google ScholarPubMed
Shagass, C., Ornitz, E. M., Sutton, S. & Tueting, P. (1978). Event-related potentials and psychopathology. In Event-related Brain Potentials in Man (ed. Callaway, E., Tueting, P. and Koslow, S.), pp. 443498. Academic Press: New York.Google Scholar
Shaw, D. M., Camps, F. E. & Eccleston, E. (1967). 5-Hydroxytryptamine in the hindbrains of depressive suicides. British Journal of Psychiatry 113, 14071411.Google Scholar
Shaw, D. M., Frizel, D., Camps, F. E. & White, S. (1969). Brain electrolytes in depressive and alcoholic suicides. British Journal of Psychiatry 115, 6979.Google Scholar
Smith, G. P., Russ, R. D., Stokes, P. E., Duckett, G. E. & Root, A. W. (1977). Plasma GH response to d-and l-amphetamine in monkeys. Hormone and Metabolic Research 9, 339340.Google Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1975). Clinical criteria for psychiatric diagnoses and DSM-III. American Journal of Psychiatry 132, 11871192.Google ScholarPubMed
Spitzer, R. L., Endicott, J. & Robins, E. (1978). Research diagnostic criteria: rationale and reliability. Archives of General Psychiatry 35, 773782.Google Scholar
Stokes, P. E. (1972). Studies on the control of adrenocortical function in depression. In Recent Advances in the Psychobiology of the Depressive Illnesses (ed. Williams, T. A., Katz, M. M. and Shield, J. A. Jr), pp. 199220. DREW Publication 70–9053. US Government Printing Office: Washington, D.C.Google Scholar
Stokes, P. E., Pick, G. R., Stoll, P. M. & Nunn, W. D. (1975). Pituitary–adrenal function in depressed patients: resistance to dexamethasone suppression. Journal of Psychiatric Research 12, 271281.CrossRefGoogle Scholar
Sulser, F., Vetulani, J. & Mobley, P. L. (1978). Mode of action of antidepressant drugs. Biochemical Pharmacology 27, 257261.Google Scholar
Svensson, T. H. & Usdin, T. (1978). Feedback inhibition of brain noradrenaline neurons by tricyclic antidepressants: α-receptor mediation. Science 202, 10891091.Google Scholar
Sweeney, D., Maas, J. W. & Heninger, G. R. (1978). State anxiety, physical activity and urinary 3-methoxy-4-hydroxymethylene glycol excretion. Archives of General Psychiatry 35, 14181423.CrossRefGoogle ScholarPubMed
Taube, S. L., Kirstein, L. S., Sweeney, D. R., Heninger, G. R. & Maas, J. W. (1978). Urinary 3-methoxy-4-hydroxy-phenethyleneglycol (MHPG) and psychiatric diagnosis: comparison of patients with primary affective disorders or schizophrenia and healthy comparison subjects. American Journal of Psychiatry 135(1), 7882.Google Scholar
Taylor, K. M. & Randall, P. K. (1975). Depletion of s-adenosyl-l-methionine in mouse brain by antidepressive drugs. Journal of Pharmacology and Experimental Therapeutics 194, 301310.Google Scholar
van Kammen, D. P. & Murphy, D. L. (1978). Prediction of imipramine antidepressant response by one-day d-amphetamine trial. American Journal of Psychiatry 135, 11791184.Google Scholar
Wilk, S., Shopsin, B., Gershon, S. & Suhl, M. (1972). Catecholamines and affective disorders: levels of MHPG in cerebrospinal fluid. Nature 235, 440442.Google Scholar
Williams, T. A., Katz, M. M. & Shield, J. A. Jr (eds.) (1972).Recent Advances in the Psychobiology of the Depressive Illnesses. DHEW Publication 70–9053. US Government Printing Office: Washington, D.C.Google Scholar
Wolfe, B. B., Harden, T. K., Sporn, J. R. & Molinoff, P. B. (1978). Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. Journal of Pharmacology and Experimental Therapeutics 207, 446457.Google Scholar