Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T23:27:38.419Z Has data issue: false hasContentIssue false

Aberrant global and local dynamic properties in schizophrenia with instantaneous phase method based on Hilbert transform

Published online by Cambridge University Press:  30 September 2021

Dan Sheng
Affiliation:
MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, PR China
Weidan Pu
Affiliation:
Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China China National Clinical Research Center for Mental Health Disorders, Changsha, PR China College of Mechatronics and Automation, National University of Defense Technology, Changsha, PR China
Zeqiang Linli
Affiliation:
MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, PR China
Guo-Liang Tian
Affiliation:
Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, PR China
Shuixia Guo*
Affiliation:
MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, PR China
Yu Fei*
Affiliation:
School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, PR China
*
Author for correspondence: Shuixia Guo, E-mail: guoshuixia75@163.com; Yu Fei, E-mail: feiyu@ynufe.edu.cn
Author for correspondence: Shuixia Guo, E-mail: guoshuixia75@163.com; Yu Fei, E-mail: feiyu@ynufe.edu.cn

Abstract

Background

Emerging functional imaging studies suggest that schizophrenia is associated with aberrant spatiotemporal interaction which may result in aberrant global and local dynamic properties.

Methods

We investigated the dynamic functional connectivity (FC) by using instantaneous phase method based on Hilbert transform to detect abnormal spatiotemporal interaction in schizophrenia. Based on resting-state functional magnetic resonance imaging, two independent datasets were included, with 114 subjects from COBRE [51 schizophrenia patients (SZ) and 63 healthy controls (HCs)] and 96 from OpenfMRI (36 SZ and 60 HCs). Phase differences and instantaneous coupling matrices were firstly calculated at all time points by extracting instantaneous parameters. Global [global synchrony and intertemporal closeness (ITC)] and local dynamic features [strength of FC (sFC) and variability of FC (vFC)] were compared between two groups. Support vector machine (SVM) was used to estimate the ability to discriminate two groups by using all aberrant features.

Results

We found SZ had lower global synchrony and ITC than HCs on both datasets. Furthermore, SZ had a significant decrease in sFC but an increase in vFC, which were mainly located at prefrontal cortex, anterior cingulate cortex, temporal cortex and visual cortex or temporal cortex and hippocampus, forming significant dynamic subnetworks. SVM analysis revealed a high degree of balanced accuracy (85.75%) on the basis of all aberrant dynamic features.

Conclusions

SZ has worse overall spatiotemporal stability and extensive FC subnetwork lesions compared to HCs, which to some extent elucidates the pathophysiological mechanism of schizophrenia, providing insight into time-variation properties of patients with other mental illnesses.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contributed equally to this work.

References

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663676.CrossRefGoogle ScholarPubMed
Baker, J. T., Holmes, A. J., Masters, G. A., Yeo, B. T., Krienen, F., Buckner, R. L., & Öngür, D. (2014). Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry, 71(2), 109118.CrossRefGoogle ScholarPubMed
Barber, A. D., Lindquist, M. A., DeRosse, P., & Karlsgodt, K. H. (2018). Dynamic functional connectivity states reflecting psychotic-like experiences. Biological psychiatry. Cognitive Neuroscience and Neuroimaging, 3(5), 443453.CrossRefGoogle ScholarPubMed
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences of the USA, 108(18), 76417646.CrossRefGoogle ScholarPubMed
Bedrosian, E. A. (1963). A product theorem for Hilbert transforms. Proceedings of the IEEE, 51(5), 868869.CrossRefGoogle Scholar
Betzel, R. F., Satterthwaite, T. D., Gold, J. I., & Bassett, D. S. (2017). Positive affect, surprise, and fatigue are correlates of network flexibility. Scientific Reports, 7(1), 520.CrossRefGoogle ScholarPubMed
Bolton, T., Wotruba, D., Buechler, R., Theodoridou, A., Michels, L., Kollias, S., … Van De Ville, D. (2020). Triple network model dynamically revisited: Lower salience network state switching in pre-psychosis. Frontiers in Physiology, 11, 66.CrossRefGoogle ScholarPubMed
Braun, U., Schäfer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., … Bassett, D. S. (2015). Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proceedings of the National Academy of Sciences of the USA, 112(37), 1167811683.CrossRefGoogle ScholarPubMed
Briend, F., Armstrong, W. P., Kraguljac, N. V., Keilhloz, S. D., & Lahti, A. C. (2020). Aberrant static and dynamic functional patterns of frontoparietal control network in antipsychotic-naïve first-episode psychosis subjects. Human Brain Mapping, 41(11), 29993008.CrossRefGoogle ScholarPubMed
Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The balanced accuracy and its posterior distribution. International Conference on Pattern Recognition, pp. 31213124.Google Scholar
Calhoun, V. D., Eichele, T., & Pearlson, G. (2009). Functional brain networks in schizophrenia: A review. Frontiers in Human Neuroscience, 3, 17.CrossRefGoogle ScholarPubMed
Calhoun, V. D., Miller, R., Pearlson, G., & Adalı, T. (2014). The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262274.CrossRefGoogle ScholarPubMed
Demirtaş, M., Tornador, C., Falcón, C., López-Solà, M., Hernández-Ribas, R., Pujol, J., … Deco, G. (2016). Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder. Human Brain Mapping, 37(8), 29182930.CrossRefGoogle ScholarPubMed
Du, Y., Fryer, S. L., Fu, Z., Lin, D., Sui, J., Chen, J., … Calhoun, V. D. (2018a). Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis. NeuroImage, 180(Pt B), 632645.CrossRefGoogle ScholarPubMed
Du, Y., Fu, Z., & Calhoun, V. D. (2018b). Classification and prediction of brain disorders using functional connectivity: Promising but challenging. Frontiers in Human Neuroscience, 12, 525.CrossRefGoogle ScholarPubMed
Du, Y., Pearlson, G. D., Liu, J., Sui, J., Yu, Q., He, H., … Calhoun, V. D. (2015). A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: Application to schizophrenia, bipolar, and schizoaffective disorders. NeuroImage, 122, 272280.CrossRefGoogle ScholarPubMed
Du, Y., Pearlson, G. D., Yu, Q., He, H., Lin, D., Sui, J., … Calhoun, V. D. (2016). Interaction among subsystems within default mode network diminished in schizophrenia patients: A dynamic connectivity approach. Schizophrenia Research, 170(1), 5565.CrossRefGoogle ScholarPubMed
Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23(10), 475483.CrossRefGoogle ScholarPubMed
Ellison-Wright, I., Glahn, D. C., Laird, A. R., Thelen, S. M., & Bullmore, E. (2008). The anatomy of first-episode and chronic schizophrenia: An anatomical likelihood estimation meta-analysis. The American Journal of Psychiatry, 165(8), 10151023.CrossRefGoogle ScholarPubMed
Fitzsimmons, J., Kubicki, M., & Shenton, M. E. (2013). Review of functional and anatomical brain connectivity findings in schizophrenia. Current Opinion in Psychiatry, 26(2), 172187.CrossRefGoogle ScholarPubMed
Fletcher, P., McKenna, P. J., Friston, K. J., Frith, C. D., & Dolan, R. J. (1999). Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. NeuroImage, 9(3), 337342.CrossRefGoogle ScholarPubMed
Fornito, A., & Bullmore, E. T. (2010). What can spontaneous fluctuations of the blood oxygenation-level-dependent signal tell us about psychiatric disorders? Current Opinion in Psychiatry, 23(3), 239249.CrossRefGoogle ScholarPubMed
Fornito, A., Yücel, M., Patti, J., Wood, S. J., & Pantelis, C. (2009). Mapping grey matter reductions in schizophrenia: An anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophrenia Research, 108(1–3), 104113.CrossRefGoogle ScholarPubMed
Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 22962314.CrossRefGoogle ScholarPubMed
Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis (2016). Schizophrenia Research, 176(2–3), 8394.CrossRefGoogle ScholarPubMed
Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30(2), 115125.CrossRefGoogle ScholarPubMed
Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome? Clinical Neuroscience, 3(2), 8997.Google ScholarPubMed
Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346355.CrossRefGoogle ScholarPubMed
Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant ‘default mode’ functional connectivity in schizophrenia. The American Journal of Psychiatry, 164(3), 450457.CrossRefGoogle ScholarPubMed
Glerean, E., Salmi, J., Lahnakoski, J. M., Jääskeläinen, I. P., & Sams, M. (2012). Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connectivity, 2(2), 91101.CrossRefGoogle ScholarPubMed
Harlalka, V., Bapi, R. S., Vinod, P. K., & Roy, D. (2019). Atypical flexibility in dynamic functional connectivity quantifies the severity in autism spectrum disorder. Frontiers in Human Neuroscience, 13, 6.CrossRefGoogle ScholarPubMed
Hindriks, R., Adhikari, M. H., Murayama, Y., Ganzetti, M., Mantini, D., Logothetis, N. K., & Deco, G. (2016). Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? NeuroImage, 127, 242256.CrossRefGoogle ScholarPubMed
Kang, J., Wang, L., Yan, C., Wang, J., Liang, X., & He, Y. (2011). Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches. NeuroImage, 56(3), 12221234.CrossRefGoogle ScholarPubMed
Khanna, A., Pascual-Leone, A., Michel, C. M., & Farzan, F. (2015). Microstates in resting-state EEG: Current status and future directions. Neuroscience and Biobehavioral Reviews, 49, 105113.CrossRefGoogle ScholarPubMed
Kottaram, A., Johnston, L. A., Cocchi, L., Ganella, E. P., Everall, I., Pantelis, C., … Zalesky, A. (2019). Brain network dynamics in schizophrenia: Reduced dynamism of the default mode network. Human Brain Mapping, 40(7), 22122228.CrossRefGoogle ScholarPubMed
Lee, C. U., Shenton, M. E., Salisbury, D. F., Kasai, K., Onitsuka, T., Dickey, C. C., … McCarley, R. W. (2002). Fusiform gyrus volume reduction in first-episode schizophrenia: A magnetic resonance imaging study. Archives of General Psychiatry, 59(9), 775781.CrossRefGoogle ScholarPubMed
Lehmann, D., Ozaki, H., & Pal, I. (1987). EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation. Electroencephalography and Clinical Neurophysiology, 67(3), 271288.CrossRefGoogle ScholarPubMed
Li, K., Sweeney, J. A., & Hu, X. P. (2020). Context-dependent dynamic functional connectivity alteration of lateral occipital cortex in schizophrenia. Schizophrenia Research, 220, 201209.CrossRefGoogle ScholarPubMed
Long, Y., Cao, H., Yan, C., Chen, X., Li, L., Castellanos, F. X., … Liu, Z. (2020a). Altered resting-state dynamic functional brain networks in major depressive disorder: Findings from the REST-meta-MDD consortium. NeuroImage: Clinical, 26, 102163.CrossRefGoogle ScholarPubMed
Long, Y., Chen, C., Deng, M., Huang, X., Tan, W., Zhang, L., … Liu, Z. (2019). Psychological resilience negatively correlates with resting-state brain network flexibility in young healthy adults: A dynamic functional magnetic resonance imaging study. Annals of Translational Medicine, 7(24), 809.CrossRefGoogle ScholarPubMed
Long, Y., Liu, Z., Chan, C., Wu, G., Xue, Z., Pan, Y., … Pu, W. (2020b). Altered temporal variability of local and large-scale resting-state brain functional connectivity patterns in schizophrenia and bipolar disorder. Frontiers in Psychiatry, 11, 422.CrossRefGoogle ScholarPubMed
Lynall, M.-E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. The Journal of Neuroscience, 30(28), 94779487.CrossRefGoogle ScholarPubMed
Onitsuka, T., Shenton, M. E., Kasai, K., Nestor, P. G., Toner, S. K., Kikinis, R., … McCarley, R. W. (2003). Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia. Archives of General Psychiatry, 60(4), 349355.CrossRefGoogle ScholarPubMed
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 21422154.CrossRefGoogle ScholarPubMed
Pucak, M. L., Levitt, J. B., Lund, J. S., & Lewis, D. A. (1996). Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. The Journal of Comparative Neurology, 376(4), 614630.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Reiser, J. E., Wascher, E., Rinkenauer, G., & Arnau, S. (2020). Cognitive-motor interference in the wild: Assessing the effects of movement complexity on task switching using mobile EEG. The European Journal of Neuroscience, 10.1111/ejn.14959 .Google ScholarPubMed
Repovs, G., Csernansky, J. G., & Barch, D. M. (2011). Brain network connectivity in individuals with schizophrenia and their siblings. Biological Psychiatry, 69(10), 967973.CrossRefGoogle ScholarPubMed
Robinson, L. F., Atlas, L. Y., & Wager, T. D. (2015). Dynamic functional connectivity using state-based dynamic community structure: Method and application to opioid analgesia. NeuroImage, 108, 274291.CrossRefGoogle ScholarPubMed
Rotarska-Jagiela, A., van de Ven, V., Oertel-Knöchel, V., Uhlhaas, P. J., Vogeley, K., & Linden, D. E. (2010). Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophrenia Research, 117(1), 2130.CrossRefGoogle ScholarPubMed
Sakoğlu, U., Pearlson, G. D., Kiehl, K. A., Wang, Y. M., Michael, A. M., & Calhoun, V. D. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: Application to schizophrenia. Magnetic Resonance Materials in Physics Biology and Medicine, 23(5–6), 351366.CrossRefGoogle ScholarPubMed
Schumacher, J., Peraza, L. R., Firbank, M., Thomas, A. J., Kaiser, M., Gallagher, P., … Taylor, J. P. (2019). Dynamic functional connectivity changes in dementia with Lewy bodies and Alzheimer's disease. NeuroImage: Clinical, 22, 101812.CrossRefGoogle ScholarPubMed
Shakil, S., Lee, C. H., & Keilholz, S. D. (2016). Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states. NeuroImage, 133, 111128.CrossRefGoogle ScholarPubMed
Skudlarski, P., Jagannathan, K., Anderson, K., Stevens, M. C., Calhoun, V. D., Skudlarska, B. A., & Pearlson, G. (2010). Brain connectivity is not only lower but different in schizophrenia: A combined anatomical and functional approach. Biological Psychiatry, 68(1), 6169.CrossRefGoogle Scholar
Sun, Y., Collinson, S. L., Suckling, J., & Sim, K. (2019). Dynamic reorganization of functional connectivity reveals abnormal temporal efficiency in schizophrenia. Schizophrenia Bulletin, 45(3), 659669.CrossRefGoogle ScholarPubMed
Taghia, J., Ryali, S., Chen, T., Supekar, K., Cai, W., & Menon, V. (2017). Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI. NeuroImage, 155, 271290.CrossRefGoogle ScholarPubMed
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273289.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., & Fornito, A. (2014). Brain networks in schizophrenia. Neuropsychology Review, 24(1), 3248.CrossRefGoogle ScholarPubMed
Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431438.CrossRefGoogle ScholarPubMed
Wise, T., Marwood, L., Perkins, A. M., Herane-Vives, A., Joules, R., Lythgoe, D. J., … Arnone, D. (2017). Instability of default mode network connectivity in major depression: A two-sample confirmation study. Translational Psychiatry, 7(4), e1105.CrossRefGoogle ScholarPubMed
Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS ONE, 8(7), e68910.CrossRefGoogle ScholarPubMed
Yaesoubi, M., Allen, E. A., Miller, R. L., & Calhoun, V. D. (2015). Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information. NeuroImage, 120, 133142.CrossRefGoogle ScholarPubMed
Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., … Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage, 76, 183201.CrossRefGoogle ScholarPubMed
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339351.CrossRefGoogle ScholarPubMed
Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: Identifying differences in brain networks. NeuroImage, 53(4), 11971207.CrossRefGoogle ScholarPubMed
Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., & Breakspear, M. (2014). Time-resolved resting-state brain networks. Proceedings of the National Academy of Sciences of the USA, 111(28), 1034110346.CrossRefGoogle ScholarPubMed
Zeng, L. L., Wang, D., Fox, M. D., Sabuncu, M., Hu, D., Ge, M., … Liu, H. (2014). Neurobiological basis of head motion in brain imaging. Proceedings of the National Academy of Sciences of the USA, 111(16), 60586062.CrossRefGoogle ScholarPubMed
Zhang, W., Li, S., Wang, X., Gong, Y., Yao, L., Xiao, Y., … Lui, S. (2018). Abnormal dynamic functional connectivity between speech and auditory areas in schizophrenia patients with auditory hallucinations. NeuroImage. Clinical, 19, 918924.CrossRefGoogle ScholarPubMed
Zöller, D., Sandini, C., Karahanoğlu, F. I., Padula, M. C., Schaer, M., Eliez, S., & Van De Ville, D. (2019). Large-scale brain network dynamics provide a measure of psychosis and anxiety in 22q11.2 deletion syndrome. Biological psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(10), 881892.Google Scholar
Supplementary material: File

Sheng et al. supplementary material

Sheng et al. supplementary material 1

Download Sheng et al. supplementary material(File)
File 3 MB
Supplementary material: File

Sheng et al. supplementary material

Sheng et al. supplementary material 2

Download Sheng et al. supplementary material(File)
File 3 MB