Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T23:15:23.174Z Has data issue: false hasContentIssue false

Higher blood and brain concentrations of imipramine and desipramine seem not to impair anti-immobility effect in mice

Published online by Cambridge University Press:  28 April 2020

I.R. de Oliveira*
Affiliation:
Clinique des Maladies Mentales et de l'Encéphale, 100, rue de la Santé, 75014Paris Departamento de Farmacologia e Fisiologia, ICS, Universidade Federal de Bahia, Vale do Canela, 40140Salvador, Bahia, Brazil
B. Diquet
Affiliation:
Laboratoire de Pharmacocinétique, Département de Pharmacologie Clinique, Groupe Hospitaller Pitié-Salpêtrière, 47, Bid de l'Hôpital, 75013Paris
V. Van der Meersch
Affiliation:
Laboratoire de Pharmacocinétique, Département de Pharmacologie Clinique, Groupe Hospitaller Pitié-Salpêtrière, 47, Bid de l'Hôpital, 75013Paris
J. Gonidec
Affiliation:
Laboratoire Delagrange, 1, rue Pierre-Brossolette, 91380 Chilly-Mazarin, France
P.A. do Prado-Lima
Affiliation:
Clinique des Maladies Mentales et de l'Encéphale, 100, rue de la Santé, 75014Paris Departamento de Farmacologia, Fundaçao Faculdade Federal de Ciências Medicas de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil
*
*Correspondence and reprints.
Get access

Summary

We studied the relationship of blood and brain levels of imipramine (IMI) and/or its active metabolite desipramine (DMI) to behavioural response, in the tail suspension test (TST). Compared to the control group, doses of 3.75, 7.5, 15, 30 and 60 mg/kg of IMI given intraperitoneally reduced immobility scores significantly. There were significant negative correlations between doses, brain levels of IMI, DMI, IMI + DMI, blood levels of IMI, DMI, IMI + DMI and the animal behaviour. Higher level of IMI and its metabolite in brain and in blood did not impair anti-immobility effect. These findings agree with most results found in men treated with IMI, and suggest a linear or sigmoid relationship between the antidepressant concentrations and its biological response.

Résumé

Résumé

Nous avons étudié le rapport entre les taux sanguins et cérébraux d'imipramine (IMI) et/ou son métabolite actif désipramine (DMI) et la réponse comportementale mesurée à l'aide du tail suspension test (TST). Les doses de 3,75, 7,75, 15, 30 et 60 mg/kg d'IMI administrées par voie intrapéritonéale ont significativement diminué les scores d'immobilité comparés aux scores du groupe témoin. Des corrélations négatives existent entre les doses, les taux cérébraux d'IMI, DMI, IMI-DMI ainsi que les taux sanguins d'IMI, DMI, IMIDMI et le comportement animal. Des taux sanguins et cérébraux plus élevés d'IMI et de son métabolite DMI n ‘ont Pas diminué l'effet anti-immobilité. Ces données sont en accord avec la plupart des résultats trouvés chez l’hommé traiti par l'IMI et suggérent une relation de type linéaire ou sigmoïle entre les concentrations de l’antidépresseur et la réponse biologique.

Type
Original article
Copyright
Copyright © European Psychiatric Association 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asberg, M.Cronholm, B.Sjoqvist, F. & Tuck, D. (1971) Relationship between plasma levels and therapeutic effect of nortriptyline. Br. Med. J. 3, 331334CrossRefGoogle ScholarPubMed
Burrows, CD.Maguire, K. P.Scoggins, B. A.Stevenson, J. & Davies, B. (1977) Plasma nortriptyline and clinical response-a study using changing plasma levels. Psychol, Med. 7, 8791CrossRefGoogle ScholarPubMed
De Vane, L.Simpkins, J.W. & Stout, S. (1984) Cerebral and blood pharmacokinetics of imipramine and its active metabolite in the pregnant rat. Psychopharmacology 84, 225230CrossRefGoogle Scholar
Diquet, B.Gaudel, G. & Colin, J. N, (1983) Dosage de la desipramine par chromatographic liquide a haute performance dans le sang et le cerveau de souris. Ann. Pharm. Fr. 41, 269274Google Scholar
Dunnett, C.W. (1964) News tables for multiple comparisons with a control. Biometrics 20, 482491CrossRefGoogle Scholar
Classman, A.H.Perel, J. M.Shostak, M.Kantor, S.J. & Fleiss, J.L. (1977) Clinical implications of imipramine plasma levels for depressive illness. Arch. Gen. Psychiatry 34, 197204CrossRefGoogle Scholar
Herrmann, B. (1970) Fate of imipramine in the body. In: Tofranil (Imipramine) (Angst J. et al., eds), Ciba-Geigy Kragh-Sorensen P., Hansen C, Baastrup P.C. & Hvidberg E.F. (1976) Self-inhibiting action of nortriptyline's antidepressive effect at high plasma levels. Psychopharmacology 45, 305312Google Scholar
Mancinelli, A.D'Aramo, V.Borsini, F. & Meli, A. (1987) Lack of relationship between effect of desipramine on forced swimming test and brain levels of desipramine or its demethylated metabolite in rats. Psychopharmacology 92, 441443CrossRefGoogle ScholarPubMed
Muscettola, G.Goodwin, F. K.Potter, W. Z.Claeys, M.M. & Markey, S.P. (1978) Imipramine and desipramine in plasma and spinal fluid: relationship to clinical response and serotonin metabolism. Arch. Gen. Psychiatry 35, 621625CrossRefGoogle ScholarPubMed
De Oliveira, I.R.do Prado-Lima, P.A.S. & Samuel-Lajeunesse, B. (1989) Monitoring of tricyclic antidepressant plasma levels and clinical response: a review of the literature. 1. Psychiatr. & Psychohiol. 4, 4360Google Scholar
De Oliveira, I.R.do Prado-Lima, P.A.S. & Samuel-Lajeunesse, B. (1989) Monitoring of tricyclic antidepressant plasma levels and clinical response: a review of the literature. Part II. Psychiatr. & Psychobiol. 4, 8190Google Scholar
R., Olivier-MartinMarzin, D.Buschsenschutz, E.Pichot, P.Boissier, J. (1975) Concentrations plasmaliques de rimipramine et de la desmethylimipramine et effet antidepresseur au coins d'un traitement controle. Psychopharmacology 41, 187195Google Scholar
Poncclet, M.Gaudel, G.Danti, D.Soubric, P. & Simon, P. (1986) Acute versus repeated administration of desipramine in rats and mice: relationships between brain concentrations and reduction of immobility in the swimming test. Psychopharmacology 90, 139141Google Scholar
Porsolt, R.D.Anton, G.Blavet, N. & Jalfre, M. (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur. J. Pharmacol. 47, 379391CrossRefGoogle ScholarPubMed
Potter, W.Z.Calil, H.M. & Manian, A.A. (1979) Hydroxylated metabolites of tricyclic antidepressants: preclinical assessment of activity. Biol. Psychiatry 14, 601613Google ScholarPubMed
Reisby, N.Gram, L. F.Bech, P.Nagy, A.Peterson, G. O.Ortmann, J.Ibsen, I.Dencker, S. J.Jacobsen, O.Krantwald, O., Sondergaard 1. & Christiansen, J. (1977) Imipramine: clinical effects and pharmacokinetics variability. Psychopharmacology 54, 263272CrossRefGoogle Scholar
Stern, L.Chermat, R. & Thierry, B. (1985) The tail suspension test. A new method for screening antidepressants in mice. Psychopharmacology 85, 367370CrossRefGoogle Scholar
Task Force on the Use of Laboratory Tests in Psychiatry (1985) Tricyclic antidepressants-blood level measurements and clinical outcome. An APA task force report. Am. Psychiatry 142, 155162CrossRefGoogle Scholar
Submit a response

Comments

No Comments have been published for this article.