Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T10:42:18.914Z Has data issue: false hasContentIssue false

Ca2+-dependent activity of human DNase I and its hyperactive variants

Published online by Cambridge University Press:  01 September 1999

CLARK Q. PAN
Affiliation:
Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080
ROBERT A. LAZARUS
Affiliation:
Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080
Get access

Abstract

We have recently constructed hyperactive human deoxyribonuclease I (DNase I) variants that digest double-stranded DNA more efficiently under physiological saline conditions by introducing positively charged amino acids at eight positions that can interact favorably with the negatively charged DNA phosphates. In this study, we present data from supercoiled DNA nicking, linear DNA digestion, and hyperchromicity assays that distinguish two classes of DNase I hyperactive variants based upon their activity dependence on Ca2+. Class A variants are highly dependent upon Ca2+, having up to 300-fold lower activity in the presence of Mg2+ alone compared to that in the presence of Mg2+ and Ca2+, and include Q9R, H44K, and T205K, in addition to wild-type DNase I. In contrast, the catalytic activity of Class B variants, which comprise the E13R, T14K, N74K, S75K, and N110R hyperactive variants, is relatively Ca2+ independent. A significant proportion of this difference in Ca2+-dependent activity can be attributed to one of the two structural calcium binding sites in DNase I. Compared to wild-type, the removal of Ca2+ binding site 2 by alanine replacements at Asp99, Asp107, and Glu112 decreased activity up to 26-fold in the presence of Mg2+ and Ca2+, but had no effect in the presence of Mg2+ alone. We propose that the rate-enhancing effect of Ca2+ binding at site 2 can be replaced by favorable electrostatic interactions created by proximal positively charged amino acid substitutions such as those found in the Class B variants, thus reducing the dependence on Ca2+.

Type
Research Article
Copyright
© 1999 The Protein Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)