Hostname: page-component-cb9f654ff-p5m67 Total loading time: 0 Render date: 2025-08-25T03:57:15.722Z Has data issue: false hasContentIssue false

Variational method for fractional Hamiltonian system in bounded domain

Published online by Cambridge University Press:  31 July 2025

Weimin Zhang*
Affiliation:
School of Mathematical Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, P.R. China (zhangweimin2021@gmail.com) School of Mathematical Sciences, Key Laboratory of Mathematics and Engineering Applications (Ministry of Education) & Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, P.R. China

Abstract

Here we consider the following fractional Hamiltonian system

\begin{equation*}\begin{cases}\begin{aligned}(-\Delta)^{s} u&=H_v(u,v) \;\;&&\text{in}~\Omega,\\(-\Delta)^{s} v&=H_u(u,v) &&\text{in}~\Omega,\\u &= v = 0 &&\text{in} ~ \mathbb{R}^N\setminus\Omega,\end{aligned}\end{cases}\end{equation*}

where $s\in (0,1)$, $N \gt 2s$, $H \in C^1(\mathbb{R}^2, \mathbb{R})$, and $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain. To apply the variational method for this problem, the key question is to find a suitable functional setting. Instead of usual fractional Sobolev spaces, we use the solution space of $(-\Delta)^{s}u=f\in L^r(\Omega)$ for $r\ge 1$, for which we show the (compact) embedding properties. When H has subcritical and superlinear growth, we construct two frameworks, respectively with the interpolation space method and the dual method, to show the existence of nontrivial solution. As byproduct, we revisit the fractional Lane–Emden system, i.e. $H(u, v)=\frac{1}{p+1}|u|^{p+1}+\frac{1}{q+1}|v|^{q+1}$, and consider the existence, uniqueness of (radial) positive solutions under subcritical assumption.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, R. and Fournier, J.. Sobolev spaces, Second edition, Pure and Applied Mathematics 140. (Elsevier/Academic Press, Amsterdam, 2003).Google Scholar
Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349381.10.1016/0022-1236(73)90051-7CrossRefGoogle Scholar
Benci, V. and Rabinowitz, P. H.. Critical point theorems for indefinite functionals. Invent. Math. 52 (1979), 241273.10.1007/BF01389883CrossRefGoogle Scholar
Biccari, U., Warma, M. and Zuazua, E.. Local elliptic regularity for the Dirichlet fractional Laplacian. Adv. Nonlinear Stud. 17 (2017), 387409.10.1515/ans-2017-0014CrossRefGoogle Scholar
Bonheure, D., Moreira dos Santos, E. and Ramos, M.. Ground state and non-ground state solutions of some strongly coupled elliptic systems. Trans. Amer. Math. Soc. 364 (2012), 447491.10.1090/S0002-9947-2011-05452-8CrossRefGoogle Scholar
Bonheure, D., Moreira dos Santos, E. and Tavares, H.. Hamiltonian elliptic systems: a guide to variational frameworks. Port. Math. 71 (2014), 301395.10.4171/pm/1954CrossRefGoogle Scholar
Bonnet, A.. A deformation lemma on a C 1 manifold. Manuscripta Math. 81 (1993), 339359.10.1007/BF02567863CrossRefGoogle Scholar
Brasco, L. and Franzina, G.. Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J. 37 (2014), 769799.10.2996/kmj/1414674621CrossRefGoogle Scholar
Brezis, H.. Functional analysis, Sobolev Spaces and Partial Differential Equations. (Springer, New York, 2010).Google Scholar
Brezis, H., Cazenave, T., Martel, Y. and Ramiandrisoa, A.. Blow up for $u_t-\Delta u=g(u)$ revisited. Adv. Differential Equations. 1 (1996), 7390.10.57262/ade/1366896315CrossRefGoogle Scholar
Caffarelli, L., Roquejoffre, J. M. and Sire, Y.. Variational problems with free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12 (2010), 11511179.10.4171/jems/226CrossRefGoogle Scholar
Choi, W.. On strongly indefinite systems involving the fractional Laplacian. Nonlinear Anal. 120 (2015), 127153.10.1016/j.na.2015.03.007CrossRefGoogle Scholar
Choi, W. and Kim, S.. Minimal energy solutions to the fractional Lane-Emden system: existence and singularity formation. Rev. Mat. Iberoam. 35 (2019), 731766.10.4171/rmi/1068CrossRefGoogle Scholar
Clément, P. H., de Fegueiredo, D. G. and Mitedieri, E.. Positive solutions of semilinear elliptic systems. Comm. Partial Differ. Equ. 17 (1992), 923940.10.1080/03605309208820869CrossRefGoogle Scholar
Clément, P. H. and van der Vorst, R. C. A. M.. On a semilinear elliptic system. Differential Integral Equations. 8 (1995), .10.57262/die/1368638168CrossRefGoogle Scholar
Clarke, E. and Ekeland, I. Hamiltonian trajectories having prescribed minimal period. Comm. Pure Appl. Math. 33 (1980), 103116.10.1002/cpa.3160330202CrossRefGoogle Scholar
Dalmasso, R.. Existence and uniqueness of positive solutions of semilinear elliptic systems. Nonlinear Anal. 39 (2000), 559568.10.1016/S0362-546X(98)00221-1CrossRefGoogle Scholar
de Figueiredo, D. G., do Ó, J. M. and Ruf, B.. An Orlicz-space approach to superlinear elliptic systems. J. Funct. Anal. 224 (2005), 471496.10.1016/j.jfa.2004.09.008CrossRefGoogle Scholar
de Figueiredo, D. G. and Felmer, P. L.. On superquadratic elliptic systems. Trans. Amer. Math. Soc. 343 (1994), 99116.10.1090/S0002-9947-1994-1214781-2CrossRefGoogle Scholar
Di Nezza, E., Palatucci, G. and Valdinoci, E.. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521573.10.1016/j.bulsci.2011.12.004CrossRefGoogle Scholar
Ekeland, I and Temam, R.. Convex Analysis and Variational problems, Society for Industrial and Applied Mathematics (SIAM). Philadelphia, (1999).Google Scholar
Felmer, P. L.. Periodic solutions of “superquadratic” Hamiltonian systems. J. Differential Equations. 102 (1993), 188207.10.1006/jdeq.1993.1027CrossRefGoogle Scholar
Ferone, V. and Volzone, B.. Symmetrization for fractional elliptic problems: a direct approach. Arch. Ration. Mech. Anal. 239 (2021), 17331770.10.1007/s00205-020-01601-8CrossRefGoogle Scholar
Hulshof, J. and van der Vorst, R. C. A. M.. Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114 (1993), 3258.10.1006/jfan.1993.1062CrossRefGoogle Scholar
Hulshof, J., Mitidieri, E. and van der Vorst, R. C. A. M.. Strongly indefinite systems with critical Sobolev exponents. Trans. Amer. Math. Soc. 350 (1998), 23492365.10.1090/S0002-9947-98-02159-XCrossRefGoogle Scholar
Leite, E. J. F. and Montenegro, M.. On positive viscosity solutions of fractional Lane-Emden systems. Topol. Methods Nonlinear Anal. 53 (2019), 407425.Google Scholar
Leonori, T., Peral, I, Primo, A. and Soria, F.. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete Contin. Dyn. Syst. 35 (2015), 60316068.10.3934/dcds.2015.35.6031CrossRefGoogle Scholar
Mawhin, J. and Willem, M.. Critical Point Theory and Hamilton System. (Springer, Berlin, 1989).10.1007/978-1-4757-2061-7CrossRefGoogle Scholar
Mitidieri, E.. A Rellich type identity and applications: Identity and applications. Comm. Partial Differential Equations. 18 (1993), 125151.10.1080/03605309308820923CrossRefGoogle Scholar
Persson, A.. Compact linear mappings between interpolation spaces. Ark. Mat. 5 (1964), 215219.10.1007/BF02591123CrossRefGoogle Scholar
Pezzo, L. D. and Quaas, A.. A Hopf’s lemma and a strong minimum principle for the fractional p-Laplacian. J. Differential Equations. 263 (2017), 765778.10.1016/j.jde.2017.02.051CrossRefGoogle Scholar
Ramos, M. and Tavares, H.. Solutions with multiple spike patterns for an elliptic system. Calc. Var. Partial Differential Equations. 31 (2008), 125.10.1007/s00526-007-0103-zCrossRefGoogle Scholar
Ramos, M., Tavares, H. and Zou, W.. A Bahri-Lions theorem revisited. Adv. Math. 222 (2009), 21732195.10.1016/j.aim.2009.07.013CrossRefGoogle Scholar
Ros-Oton, X. and Serra, J.. The extremal solution for the fractional Laplacian. Calc. Var. Partial Differential Equations. 50 (2014), 723750.10.1007/s00526-013-0653-1CrossRefGoogle Scholar
Ros-Oton, X. and Serra, J.. The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101 (2014), 275302.10.1016/j.matpur.2013.06.003CrossRefGoogle Scholar
Silvestre, L.. Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007), 67112.10.1002/cpa.20153CrossRefGoogle Scholar
Struwe, M.. Variational methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. 4th edn, (Springer-Verlag, Berlin, 2008).Google Scholar
Willem, M.. Minimax Theorems. (Birkhäuser, Boston, 1996).10.1007/978-1-4612-4146-1CrossRefGoogle Scholar