No CrossRef data available.
Published online by Cambridge University Press: 26 April 2024
We generalize the influential $C^*$ -algebraic results of Kawamura–Tomiyama and Archbold–Spielberg for crossed products of discrete groups actions to the realm of Banach algebras and twisted actions. We prove that topological freeness is equivalent to the intersection property for all reduced twisted Banach algebra crossed products coming from subgroups, and in the untwisted case to a generalized intersection property for a full $L^p$
-algebraic results of Kawamura–Tomiyama and Archbold–Spielberg for crossed products of discrete groups actions to the realm of Banach algebras and twisted actions. We prove that topological freeness is equivalent to the intersection property for all reduced twisted Banach algebra crossed products coming from subgroups, and in the untwisted case to a generalized intersection property for a full $L^p$ -operator algebra crossed product for any $p\in [1,\,\infty ]$
-operator algebra crossed product for any $p\in [1,\,\infty ]$ . This gives efficient simplicity criteria for various Banach algebra crossed products. We also use it to identify the prime ideal space of some crossed products as the quasi-orbit space of the action. For amenable actions we prove that the full and reduced twisted $L^p$
. This gives efficient simplicity criteria for various Banach algebra crossed products. We also use it to identify the prime ideal space of some crossed products as the quasi-orbit space of the action. For amenable actions we prove that the full and reduced twisted $L^p$ -operator algebras coincide.
-operator algebras coincide.
 -algebras. Trans. Amer. Math. Soc. 354 (2002), 4153–4178.CrossRefGoogle Scholar
-algebras. Trans. Amer. Math. Soc. 354 (2002), 4153–4178.CrossRefGoogle Scholar -theory, Longman Scientific & Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 70 (1994).Google Scholar
-theory, Longman Scientific & Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 70 (1994).Google Scholar -dynamical systems. Proc. Einburgh Math. Soc. (2) 37 (1993), 119–124.CrossRefGoogle Scholar
-dynamical systems. Proc. Einburgh Math. Soc. (2) 37 (1993), 119–124.CrossRefGoogle Scholar -algebras, transfer operators and topological pressure. Isr. J. Math. 246 (2021), 149–210.CrossRefGoogle Scholar
-algebras, transfer operators and topological pressure. Isr. J. Math. 246 (2021), 149–210.CrossRefGoogle Scholar -spaces, preprint Arxiv:2303.09997.Google Scholar
-spaces, preprint Arxiv:2303.09997.Google Scholar -algebras isomorphically representable on $\ell ^p$
-algebras isomorphically representable on $\ell ^p$ . Anal. PDE 13 (2020), 2173–2181.CrossRefGoogle Scholar
. Anal. PDE 13 (2020), 2173–2181.CrossRefGoogle Scholar -Algebras and Finite-dimensional Approximations, Graduate Studies in Mathematics, Vol. 88 (American Mathematical Society, Providence, RI, 2008).CrossRefGoogle Scholar
-Algebras and Finite-dimensional Approximations, Graduate Studies in Mathematics, Vol. 88 (American Mathematical Society, Providence, RI, 2008).CrossRefGoogle Scholar -operator algebras and applications, preprint Arxiv:math.OA/1909.03612, 2019.Google Scholar
-operator algebras and applications, preprint Arxiv:math.OA/1909.03612, 2019.Google Scholar -theory of $L^p$
-theory of $L^p$ operator crossed products. J. Topol. Anal. 13 (2021), 809–841.CrossRefGoogle Scholar
 operator crossed products. J. Topol. Anal. 13 (2021), 809–841.CrossRefGoogle Scholar -algebras. Mem. Amer. Math. Soc. no. 75 (1967), 92.Google Scholar
-algebras. Mem. Amer. Math. Soc. no. 75 (1967), 92.Google Scholar -algebras generated by partial isometries. J. Operator Theory 47 (2002), 169–186.Google Scholar
-algebras generated by partial isometries. J. Operator Theory 47 (2002), 169–186.Google Scholar -spaces. Expo. Math. 39 (2021), 420–453.CrossRefGoogle Scholar
-spaces. Expo. Math. 39 (2021), 420–453.CrossRefGoogle Scholar -spaces. Adv. Math. 318 (2017), 233–278.CrossRefGoogle Scholar
-spaces. Adv. Math. 318 (2017), 233–278.CrossRefGoogle Scholar -spaces. Adv. Math. 296 (2016), 85–92.CrossRefGoogle Scholar
-spaces. Adv. Math. 296 (2016), 85–92.CrossRefGoogle Scholar -convolution algebras on $L^q$
-convolution algebras on $L^q$ -spaces. Trans. Amer. Math. Soc 371 (2019), 2207–2236.CrossRefGoogle Scholar
-spaces. Trans. Amer. Math. Soc 371 (2019), 2207–2236.CrossRefGoogle Scholar -operator crossed products with unique trace. J. Operator Theory 74 (2015), 133–147.CrossRefGoogle Scholar
-operator crossed products with unique trace. J. Operator Theory 74 (2015), 133–147.CrossRefGoogle Scholar -operator algebras. J. Funct. Anal 285 (2023), 110037.CrossRefGoogle Scholar
-operator algebras. J. Funct. Anal 285 (2023), 110037.CrossRefGoogle Scholar -algebras. Tokyo J. Math. 13 (1990), 251–257.CrossRefGoogle Scholar
-algebras. Tokyo J. Math. 13 (1990), 251–257.CrossRefGoogle Scholar - inclusions. Proc. Lond. Math. Soc. (3) 121 (2020), 788–827.CrossRefGoogle Scholar
- inclusions. Proc. Lond. Math. Soc. (3) 121 (2020), 788–827.CrossRefGoogle Scholar -dynamical systems. III. J. Funct. Anal. 45 (1982), 357–390.CrossRefGoogle Scholar
-dynamical systems. III. J. Funct. Anal. 45 (1982), 357–390.CrossRefGoogle Scholar -algebras. Math. Proc. Camb. Soc. 106 (1989), 0–0.Google Scholar
-algebras. Math. Proc. Camb. Soc. 106 (1989), 0–0.Google Scholar operator algebras and the $K$
 operator algebras and the $K$ -theory of Cuntz algebras on $L^p$
-theory of Cuntz algebras on $L^p$ spaces, preprint arXiv:1309.6406, 2013, p. 54.Google Scholar
 spaces, preprint arXiv:1309.6406, 2013, p. 54.Google Scholar -algebras. J. Operator Theory 25 (1991), 3–36.Google Scholar
-algebras. J. Operator Theory 25 (1991), 3–36.Google Scholar -algebras. Enseign. Math. 69 (2023), 275–314.CrossRefGoogle Scholar
-algebras. Enseign. Math. 69 (2023), 275–314.CrossRefGoogle Scholar -Algebras, Lecture Notes Ser., Vol. 2 (Res. Inst. Math., Seoul, 1992).Google Scholar
-Algebras, Lecture Notes Ser., Vol. 2 (Res. Inst. Math., Seoul, 1992).Google Scholar operator crossed products, preprint arXiv:2212.00408.Google Scholar
 operator crossed products, preprint arXiv:2212.00408.Google Scholar -algebre par un groupe d'automorphismes. J. Math. Pures Appl. 47 (1968), 101–239.Google Scholar
-algebre par un groupe d'automorphismes. J. Math. Pures Appl. 47 (1968), 101–239.Google Scholar