Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:40:55.006Z Has data issue: false hasContentIssue false

Spectral properties of two-parameter eigenvalue problems

Published online by Cambridge University Press:  14 November 2011

Paul Binding
Affiliation:
Department of Mathematics and Statistics, The University of Calgary
Patrick J. Browne
Affiliation:
Department of Mathematics and Statistics, The University of Calgary

Synopsis

We study the self-adjoint eigenvalue problem W(λ)x = 0, (*), in Hilbert space for one equation in two parameters. Here

is bounded below with compact resolvent for each λ = (λ1, λ2). We give necessary and sufficient conditions for the existence of λ so that (*) holds with W(λ)= ≧0 and we investigate the geometry of the set Z0 of such λ. We also discuss higher order solution sets Zi where the ith eigenvalue of W(λ) vanishes, deriving various asymptotic results in a unified fashion.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Atkinson, F. V.. Multi-parameter Eigenvalue Problems, Vol. I: Matrices and Compact Operators (New York: Academic Press, 1972).Google Scholar
2Binding, P. and Browne, P. J.. A variational approach to multiparameter eigenvalue problems in Hilbert space. SIAM J. Math. Anal. 9 (1978), 10541067.CrossRefGoogle Scholar
3Binding, P. and Browne, P. J.. Comparison cones for multiparameter eigenvalue problems, J. Math. Anal. Appl. 77 (1980), 132149.CrossRefGoogle Scholar
4Faierman, M.. Asymptotic formulae for the eigenvalues of a two-parameter ordinary differential equation of the second order. Canad. Math. Bull. 17 (1975), 657665.CrossRefGoogle Scholar
5Gregǔs, M., Neumann, F. and Arscott, F. M.. Three point boundary value problems in differential equations J. Lond. Math. Soc. 3 (1971), 429436.CrossRefGoogle Scholar
6Hadeler, K. P.. Mehrparametrige und nichtlineare eigenwertaufgaben. Arch. Rational Mech. Anal. 27 (1967), 306328.CrossRefGoogle Scholar
7Loud, W. S.. Stability regions for Hill's equation. J. Differential Equations 19 (1975), 226241.CrossRefGoogle Scholar
8Reed, M. and Simon, B.. Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators (New York: Academic Press, 1978).Google Scholar
9Richardson, R. G. D.. Theorems of oscillation for two linear differential equations of the second order with two parameters. Trans. Amer. Math. Soc. 13 (1912), 2234.CrossRefGoogle Scholar
10Richardson, R. G. D., Über die notwendig und hinreichenden Bedingungen für das Bestehen eines Kleinschen Oszillationstheorems. Math. Ann. 73 (1912/1913), 289304.CrossRefGoogle Scholar
11Rockafellar, R. T.. Convex Analysis (Princeton: University Press, 1970).CrossRefGoogle Scholar
12Sleeman, B. D.. Klein oscillation theorems for multiparameter eigenvalue problems in ordinary differential equations. Nieuw Arch. Wisk. 27 (1979), 341362.Google Scholar
13Turyn, L.. Sturm-Liouville problems with several parameters. J. Differential Equations 38 (1980), 239259.CrossRefGoogle Scholar
14Weinstein, A. and Stenger, W.. Methods of Intermediate Problems for Eigenvalues (New York: Academic Press, 1972).Google Scholar