No CrossRef data available.
Published online by Cambridge University Press: 11 April 2025
We study the existence and regularity of minimizers of the neo-Hookean energy in the closure of classes of deformations without cavitation. The exclusion of cavitation is imposed in the form of the divergence identities, which is equivalent to the well-known condition (INV) with $\operatorname{Det} = \operatorname{det}$. We show that the neo-Hookean energy admits minimizers in classes of maps that are one-to-one a.e. with positive Jacobians, provided that these maps are the weak limits of sequences of maps that satisfy the divergence identities. In particular, these classes include the weak closure of diffeomorphisms and the weak closure of homeomorphisms satisfying Lusin’s condition N. Moreover, if the minimizers satisfy condition (INV), then their inverses have Sobolev regularity. This extends a recent result by Doležalová, Hencl, and Molchanova by showing that the minimizers they obtained enjoy extra regularity properties and that the existence of minimizers can still be obtained even when their coercivity assumption is relaxed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.