Hostname: page-component-857557d7f7-ktsnh Total loading time: 0 Render date: 2025-11-24T07:35:51.971Z Has data issue: false hasContentIssue false

Quantitative stability in fractional Hardy–Sobolev inequalities: the role of Euler–Lagrange equations

Published online by Cambridge University Press:  24 November 2025

Souptik Chakraborty*
Affiliation:
Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Post Bag No 6503, Sharada Nagar, Bengaluru 560065, India (soupchak9492@gmail.com, souptik25@tifrbng.res.in)
Utsab Sarkar
Affiliation:
Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India (utsab@math.iitb.ac.in, reachutsab@gmail.com)
*
*Corresponding author.

Abstract

This paper investigates sharp stability estimates for the fractional Hardy–Sobolev inequality:

\begin{align*}\ \ \ \ \ \ \ \ \ \mu_{s,t}\left(\mathbb{R}^N\right) \left(\int_{\mathbb{R}^N} \frac{|u|^{2^*_s(t)}}{|x|^t} \,\mathrm{d}x \right)^{\frac{2}{2^*_s(t)}} \leq \int_{\mathbb{R}^N} \left|(-\Delta)^{\frac{s}{2}} u \right|^2 \,\mathrm{d}x, \quad \text{for all } u \in \dot{H}^s\left(\mathbb{R}^N\right)\end{align*}

where $s \in (0,1)$, $0 \lt t \lt 2s$, $N \gt 2s$ is an integer, and $2^*_s(t) = \frac{2(N-t)}{N-2s}$. Here, $\mu_{s,t}\left(\mathbb{R}^N\right)$ represents the best constant in the inequality. The primary focus is on the quantitative stability results of the above inequality and the corresponding Euler–Lagrange equation near a positive ground-state solution. Additionally, a qualitative stability result is established for the Euler–Lagrange equation, offering a thorough characterization of the Palais–Smale sequences for the associated energy functional. These results generalize the sharp quantitative stability results for the classical Sobolev inequality in $\mathbb{R}^N$, originally obtained by Bianchi and Egnell [J. Funct. Anal. 1991] as well as the corresponding critical exponent problem in $\mathbb{R}^N$, explored by Ciraolo, Figalli, and Maggi [Int. Math. Res. Not. 2017] in the framework of fractional calculus.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aryan, S.. Stability of Hardy-Littlewood-Sobolev inequality under bubbling. Calc. Var. PDE. 62 (2023), 42.CrossRefGoogle Scholar
Aubin, T.. Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11 (1976), 573598.Google Scholar
Bartsch, T., Weth, T. and Willem, M.. A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc. Var. PDE. 18 (2003), 253268.CrossRefGoogle Scholar
Bhakta, M., Chakraborty, S. and Pucci, P.. Fractional Hardy-Sobolev equations with nonhomogeneous terms. Adv. Nonlinear Anal. 10 (2021), 10861116.CrossRefGoogle Scholar
Bhakta, M., Ganguly, D., Karmakar, D. and Mazumdar, S.. Sharp quantitative stability of Poincaré-Sobolev inequality in the hyperbolic space and applications to fast diffusion flows. Calc. Var. PDE. 64 (2025), 47.CrossRefGoogle Scholar
Bianchi, G. and Egnell, H.. A note on the Sobolev inequality. J. Funct. Anal. 100 (1991), 1824.CrossRefGoogle Scholar
Bonforte, M., Dolbeault, J., Nazaret, B. and Simonov, N.. Stability in Gagliardo-Nirenberg-Sobolev inequalities: flows, regularity, and the entropy method. Mem. Am. Math. Soc. 308 (2025), viii+166Google Scholar
Brezis, H. and Lieb, E. H.. Sobolev inequalities with remainder terms. J. Funct. Anal. 62 (1985), 7386.CrossRefGoogle Scholar
Carlen, E. A. and Figalli, A.. Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller-Segel equation. Duke Math. J. 162 (2013), 579625.CrossRefGoogle Scholar
Chen, H., Kim, S. and Wei, J.. Sharp quantitative stability estimates for critical points of fractional Sobolev inequalities. Int. Math. Res. Not. 12 (2025), 36.Google Scholar
Chen, S., Frank, R. L. and Weth, T.. Remainder terms in the fractional Sobolev inequality. Indiana Univ. Math. J. 62 (2013), 13811397.CrossRefGoogle Scholar
Cianchi, A., Fusco, N., Maggi, F. and Pratelli, A.. The sharp Sobolev inequality in quantitative form. J. Eur. Math. Soc. 11 (2009), 11051139.CrossRefGoogle Scholar
Ciraolo, G., Figalli, A. and Maggi, F.. A quantitative analysis of metrics on $\mathbb{R}^n$ with almost constant positive scalar curvature, with applications to fast diffusion flows. Int. Math. Res. Not. 2018 (2017), 67806797.CrossRefGoogle Scholar
Cotsiolis, A. and Nikolaos, K. T.. Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295 (2004), 225236.CrossRefGoogle Scholar
De Nitti, N. and König, T.. Stability with explicit constants of the critical points of the fractional Sobolev inequality and applications to fast diffusion. J. Funct. Anal. 285 (2023), 30.CrossRefGoogle Scholar
Deng, B., Sun, L. and cheng Wei, J.. Sharp quantitative estimates of Struwe’s decomposition. Duke Math. J. 174 (2025), 159228.CrossRefGoogle Scholar
Di Nezza, E., Palatucci, G. and Valdinoci, E.. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521573.CrossRefGoogle Scholar
Elliott, H. L.. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118 (1983), 349374.Google Scholar
Figalli, A. and Glaudo, F.. On the sharp stability of critical points of the Sobolev inequality. Arch. Ration. Mech. Anal. 237 (2020), 201258.CrossRefGoogle Scholar
Fusco, N., Maggi, F. and Pratelli, A.. The sharp quantitative isoperimetric inequality. Ann. Math. (2). 168 (2008), 941980.CrossRefGoogle Scholar
Guozhen, L. and Wei, J.. On a Sobolev inequality with remainder terms. Proc. Am. Math. Soc. 128 (2000), 7584.Google Scholar
Musina, R. and Alexander, N.I. Complete classification and nondegeneracy of minimizers for the fractional Hardy-Sobolev inequality, and applications. J. Differ. Equ. 280 (2021), 292314.CrossRefGoogle Scholar
Musina, R. and Alexander, N.I. A note on higher order fractional Hardy-Sobolev inequalities. Nonlinear Anal. 203 (2021), 3.CrossRefGoogle Scholar
Palatucci, G. and Pisante, A.. Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. PDE. 50 (2014), 799829.CrossRefGoogle Scholar
Rey, O.. The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89 (1990), 152.CrossRefGoogle Scholar
Smets, D.. Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities. Trans. Am. Math. Soc. 357 (2005), 29092938.CrossRefGoogle Scholar
Struwe, M.. Applications to nonlinear partial differential equations and Hamiltonian systems. Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics., Variational methods Vol. 34, (Springer-Verlag, Berlin, 2008).Google Scholar
Talenti, G.. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 4 (1976), 353372.CrossRefGoogle Scholar
Tintarev, C.. Concentration analysis and cocompactness, Concentration Analysis and Applications to PDE (Trends Math.). pp. 117141, (Springer Birkhäuser/Springer, Basel, 2013).CrossRefGoogle Scholar
Wei, J. and Yuanze, W.. On the stability of the Caffarelli-Kohn-Nirenberg inequality. Math. Ann. 384 (2022), 15091546.CrossRefGoogle Scholar
Yang, J.. Fractional Sobolev-Hardy inequality in $\mathbb{R}^N$. Nonlinear Anal. 119 (2015), 179185.CrossRefGoogle Scholar