Hostname: page-component-5b777bbd6c-gtgcz Total loading time: 0 Render date: 2025-06-19T15:35:49.314Z Has data issue: false hasContentIssue false

Optimal function spaces in weighted Sobolev embeddings with α-homogeneous weights

Published online by Cambridge University Press:  19 June 2025

Ladislav Drážný*
Affiliation:
Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 49/83, 186 75 Praha 8, Czech Republic Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Praha 6, Czech Republic (draznyl2@seznam.cz)

Abstract

We study weighted Sobolev inequalities on open convex cones endowed with α-homogeneous weights satisfying a certain concavity condition. We establish a so-called reduction principle for these inequalities and characterize optimal rearrangement-invariant function spaces for these weighted Sobolev inequalities. Both optimal target and optimal domain spaces are characterized. Abstract results are accompanied by general yet concrete examples of optimal function spaces. For these examples, the class of so-called Lorentz–Karamata spaces, which contains in particular Lebesgue spaces, Lorentz spaces, and some Orlicz spaces, is used.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alberico, A., Cianchi, A., Pick, L. and Slavíková, L.. Sharp Sobolev type embeddings on the entire Euclidean space. Commun. Pure Appl. Anal. 17 (2018), 20112037.10.3934/cpaa.2018096CrossRefGoogle Scholar
Bennett, C. and Sharpley, R.. Interpolation of operators. Of Pure and Applied Mathematics, Vol. 129, (Academic Press, Inc, Boston, MA, 1988).Google Scholar
Bergh, J. and Löfström, J.. Interpolation spaces. An introduction. of Grundlehren der Mathematischen Wissenschaften Vol. 223, (Springer-Verlag, Berlin-New York, 1976).Google Scholar
Brézis, H. and Wainger, S.. A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations. 5 (1980), 773789.10.1080/03605308008820154CrossRefGoogle Scholar
Cabré, X. and Ros-Oton, X.. Regularity of stable solutions up to dimension 7 in domains of double revolution. Comm. Partial Differential Equations. 38 (2013), 135154.10.1080/03605302.2012.697505CrossRefGoogle Scholar
Cabré, X. and Ros-Oton, X.. Sobolev and isoperimetric inequalities with monomial weights. J. Differential Equations. 255 (2013), 43124336.10.1016/j.jde.2013.08.010CrossRefGoogle Scholar
Cabré, X., Ros-Oton, X. and Serra, J.. Sharp isoperimetric inequalities via the ABP method. J. Eur. Math. Soc. (JEMS). 18 (2016), 29712998.10.4171/jems/659CrossRefGoogle Scholar
Castro, H.. Hardy-Sobolev-type inequalities with monomial weights. Ann. Mat. Pura Appl. (4). 196 (2017), 579598.10.1007/s10231-016-0587-2CrossRefGoogle Scholar
Castro, H.. Extremals for Hardy-Sobolev type inequalities with monomial weights. J. Math. Anal. Appl. 494 (2021), .10.1016/j.jmaa.2020.124645CrossRefGoogle Scholar
Cianchi, A. and Pick, L.. Sobolev embeddings into BMO, VMO, and $L_\infty$. Ark. Mat. 36 (1998), 317340.10.1007/BF02384772CrossRefGoogle Scholar
Cianchi, A. and Pick, L.. Optimal Gaussian Sobolev embeddings. J. Funct. Anal. 256 (2009), 35883642.10.1016/j.jfa.2009.03.001CrossRefGoogle Scholar
Cianchi, A. and Pick, L.. Optimal Sobolev trace embeddings. Trans. Amer. Math. Soc. 368 (2016), 83498382.10.1090/tran/6606CrossRefGoogle Scholar
Cianchi, A., Pick, L. and Slavíková, L.. Higher-order Sobolev embeddings and isoperimetric inequalities. Adv. Math. 273 (2015), 568650.10.1016/j.aim.2014.12.027CrossRefGoogle Scholar
Cianchi, A., Pick, L. and Slavíková, L.. Sobolev embeddings, rearrangement-invariant spaces and Frostman measures. Ann. Inst. H. Poincaré C Anal. Non Linéaire. 37 (2020), 105144.10.1016/j.anihpc.2019.06.004CrossRefGoogle Scholar
Cinti, E., Glaudo, F., Pratelli, A., Ros-Oton, X. and Serra, J.. Sharp quantitative stability for isoperimetric inequalities with homogeneous weights. Trans. Amer. Math. Soc. 375 (2022), 15091550.10.1090/tran/8525CrossRefGoogle Scholar
Edmunds, D. E. and Evans, W. D.. Hardy operators, Function Spaces and embeddings. (Springer-Verlag, Berlin, 2004).10.1007/978-3-662-07731-3CrossRefGoogle Scholar
Edmunds, D. E., Kerman, R. and Pick, L.. Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal. 170 (2000), 307355.10.1006/jfan.1999.3508CrossRefGoogle Scholar
Edmunds, D. E., Mihula, Z., Musil, V., and Pick, L.. Boundedness of classical operators on rearrangement-invariant spaces. J. Funct. Anal. 278, (2020), 108341.10.1016/j.jfa.2019.108341CrossRefGoogle Scholar
Gogatishvili, A., Opic, B. and Pick, L.. Weighted inequalities for Hardy-type operators involving suprema. Collect. Math. 57 (2006), 227255.Google Scholar
Grafakos, L.. Classical Fourier analysis. Of Graduate Texts in Mathematics, third, Vol.249, (Springer, New York, NY, 2014).Google Scholar
Gurka, P., and Hauer, D.. More insights into the Trudinger-Moser inequality with monomial weight. Calc. Var. Partial Differential Equations. 60 (2021), .10.1007/s00526-020-01890-7CrossRefGoogle Scholar
Hansson, K.. Imbedding theorems of Sobolev type in potential theory. Math. Scand. 45 (1979), 77102.10.7146/math.scand.a-11827CrossRefGoogle Scholar
Kerman, R. and Pick, L.. Optimal Sobolev imbeddings. Forum Math. 18 (2006), 535570.10.1515/FORUM.2006.028CrossRefGoogle Scholar
Lam, N.. Sharp Trudinger-Moser inequalities with monomial weights. NoDEA Nonlinear Differential Equations Appl. 24 (2017), .10.1007/s00030-017-0456-8CrossRefGoogle Scholar
Leoni, G.. A first course in Sobolev spaces. Of Graduate Studies in Mathematics, second, Vol.181, (American Mathematical Society, Providence, RI, 2017).Google Scholar
Lieb, E. H. and Loss, M.. Analysis, Graduate Studies in Mathematics second edition, Vol. 14, (American Mathematical Society, Providence, RI, 2001).Google Scholar
Maly, J., Swanson, D. and Ziemer, W. P.. The co-area formula for Sobolev mappings. Trans. Amer. Math. Soc. 355 (2003), 477492.10.1090/S0002-9947-02-03091-XCrossRefGoogle Scholar
Mihula, Z.. Poincare-Sobolev inequalities with rearrangement-invariant norms on the entire space. Math. Z. 298 (2021), 16231640.10.1007/s00209-020-02652-zCrossRefGoogle Scholar
Mihula, Z.. Optimal behavior of weighted Hardy operators on rearrangement-invariant spaces. Math. Nachr. 296 (2023), 34923538.10.1002/mana.202200015CrossRefGoogle Scholar
Mihula, Z.. Embeddings of homogeneous Sobolev spaces on the entire space. Proc. Roy. Soc. Edinburgh Sect. A. 151 .Google Scholar
Moser, J.. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1971), 10771092.10.1512/iumj.1971.20.20101CrossRefGoogle Scholar
Muckenhoupt, B.. Hardy’s inequality with weights. Studia Math. 44 (1972), 3138.10.4064/sm-44-1-31-38CrossRefGoogle Scholar
Musil, V. and Olhava, R.. Interpolation theorem for Marcinkiewicz spaces with applications to Lorentz gamma spaces. Math. Nachr. 292 (2019), 11061121.10.1002/mana.201700452CrossRefGoogle Scholar
Neves, J. S.. Lorentz-Karamata spaces, Bessel and Riesz potentials and embeddings. Dissertationes Math. (Rozprawy Mat.). 405 (2002).Google Scholar
O’Neil, R.. Convolution operators and $L(p,\,q)$ spaces. Duke Math. J. 30 (1966), 129142.Google Scholar
Opic, B. and Pick, L.. On generalized Lorentz-Zygmund spaces. Math. Inequal. Appl. 2 (1999), 391467.Google Scholar
Peetre, J.. Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier (Grenoble). 16 (1966), 279317.10.5802/aif.232CrossRefGoogle Scholar
Peša, D.. Reduction principle for a certain class of kernel-type operators. Math. Nachr. 293 (2020), 761773.10.1002/mana.201800510CrossRefGoogle Scholar
Peša, D.. Lorentz–Karamata spaces. (2023), preprint April. arXiv:2006.14455v4.Google Scholar
Peša, D.. On the smoothness of slowly varying functions. Proc. Edinb. Math. Soc. (2). 67 (2024), 876891.10.1017/S0013091524000348CrossRefGoogle Scholar
Pick, L., Kufner, A., John, O. and Fučík, S.. Function spaces. Of De Gruyter Series in Nonlinear Analysis and Applications, extended edition, Vol. 1, (Walter de Gruyter & Co, Berlin, 2013).Google Scholar
Rudin, W.. Real and Complex analysis. third edition, (McGraw-Hill Book Co, New York, NY, 1987).Google Scholar
Ruf, B.. Lorentz spaces and nonlinear elliptic systems. In Contributions to Nonlinear analysis of Progr. Nonlinear Differential Equations Appl. Vol.66, (Birkhäuser, Basel, 2006).Google Scholar
Stein, E. M.. Editor’s note: the differentiability of functions in $R^n$. Ann. of Math. (2). 113 (1981), 383385.Google Scholar
Stein, E. M. and Weiss, G.. Introduction to Fourier analysis on Euclidean spaces. Of Princeton Mathematical Series, (Princeton University Press, Princeton, NJ, 1971).Google Scholar
Swanson, D.. Area, coarea, and approximation in $W^{1,1}$. Ark. Mat. 45 (2007), 381399.10.1007/s11512-007-0051-zCrossRefGoogle Scholar
Talenti, G.. Inequalities in rearrangement invariant function spaces. In Nonlinear analysis, Function Spaces and applications, Vol.5, (Prometheus, Prague, 1994).Google Scholar
Tartar, L.. Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8). 1 (1998), 479500.Google Scholar
Trudinger, N. S.. On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473483.Google Scholar
Wang, J.. Weighted Hardy-Sobolev, log-Sobolev and Moser-Onofri-Beckner inequalities with monomial weights. Potential Anal. 58 (2023), 225240.10.1007/s11118-021-09938-9CrossRefGoogle Scholar