Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T12:09:53.988Z Has data issue: false hasContentIssue false

On the energy equality for very weak solutions to 3D MHD equations

Published online by Cambridge University Press:  18 November 2021

Baishun Lai
Affiliation:
LCSM (MOE) and School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, Hunan, P.R. China (laibaishun@hunnu.edu.cn)
Yifan Yang
Affiliation:
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, P.R. China (1263299688@qq.com)

Abstract

In this paper, we consider the energy equality of the 3D Cauchy problem for the magneto-hydrodynamics (MHD) equations. We show that if a very weak solution of MHD equations belongs to $L^{4}(0,\,T;L^{4}(\mathbb {R}^{3}))$, then it is actually in the Leray–Hopf class and therefore must satisfy the energy equality in the time interval $[0,\,T]$.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

C. Berselli, Luigi and Chiodaroli, E.. On the energy equality for the 3D Navier-Stokes equations. Nonlinear Anal. 192 (2020), 111704.CrossRefGoogle Scholar
Chen, Q., Miao, C. and Zhang, Z.. On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Commun. Math. Phys. 284 (2008), 919930.CrossRefGoogle Scholar
Duvaut, G. and Lions, J. L.. Inquations en thermolasticit et magnto-hydrodynamique. Arch. Rational Mech. Anal. 46 (1972), 241279.CrossRefGoogle Scholar
Galdi, G. P.. An introduction to the Navier-Stokes initial-boundary value problem. In Fundamental directions in mathematical fluid mechanics, Adv. Math. Fluid Mech., pp. 1–70 (Basel:Birkhäuser, 2000).CrossRefGoogle Scholar
Galdi, G. P.. An introduction to the mathematical theory of the Navier-Stokes equations, steady-state problems, 2nd ed., Springer Monographs in Mathematics (New York: Springer, 2011).CrossRefGoogle Scholar
Galdi, G. P.. On the energy equality for distributional solutions to Navier-Stokes equations. Proc. Am. Math. Soc. 147 (2019), 785792.CrossRefGoogle Scholar
Heywood, John G.. The Navier-Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980), 639681.CrossRefGoogle Scholar
He, C. and Xin, Z.. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J. Funct. Anal. 227 (2005), 113152.CrossRefGoogle Scholar
He, C. and Xin, Z.. On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213 (2005), 235254.CrossRefGoogle Scholar
Hopf, E.. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen (German). Math. Nachr. 4 (1951), 213231.CrossRefGoogle Scholar
Inria, M. S. and Trmam, R.. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36 (1983), 635664.Google Scholar
Kim, J. M.. The energy conservations and lower bounds for possible singular solutions to the 3D incompressible MHD equations. Acta Math. Scientia. 40B (2020), 237244.CrossRefGoogle Scholar
Leray, J.. Sur le mouvement d'un liquide visqueux emplissant l'espace (French). Acta Math. 63 (1934), 193248.CrossRefGoogle Scholar
Lions, J. L.. Espaces intermédiaires entre espaces hilbertiens et applications (French). Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N. S.). 2 (1958), 419432.Google Scholar
Lions, J. L.. Sur la régularité et l'unicité des solutions turbulentes des équations de Navier Stokes (French). Rend. Sem. Mat. Univ. Padova 30 (1960), 1623.Google Scholar
Luo, L., Zhao, Y. and Yang, Q.. Regularity criteria for the three-dimensional MHD equations. Acta Math. Appl. Sinica 27 (2011), 581594. English Series.CrossRefGoogle Scholar
Miao, C., Yuan, B. and Zhang, B.. Well-posedeness for the incompressible magneto-hydrodynamic system. Math. Meth. Appl. Sci. 30 (2007), 961976.CrossRefGoogle Scholar
Robinson, J. C., Rodrigo, J. L. and Sadowski, W.. The three-dimensional Navier-Stokes equations, volume of 157 Cambridge Studies in Advanced Mathematics (Cambridge, UK: Cambridge University Press, 2016).CrossRefGoogle Scholar
Serrin, J.. The initial value problem for the Navier-Stokes equations. In Nonlinear Problems, Proc. Sympos., Madison, Wis., pp. 69–98 (Madison, Wis.: Univ. of Wisconsin Press, 1963).Google Scholar
Shinbort, M.. The energy equation for the Navier-Stokes system. SIAMJ. Math. Anal. 5 (1974), 948954.CrossRefGoogle Scholar
Wu, J.. Bounds and new approaches for the 3D MHD equations. J. Nonlinear Sci. 12 (2002), 395413.CrossRefGoogle Scholar