Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T11:48:49.206Z Has data issue: false hasContentIssue false

On the boundary conditions in estimating ∇ω by div ω and curl ω

Published online by Cambridge University Press:  27 December 2018

Gyula Csató
Affiliation:
Departamento de Matemática, Universidad de Concepción, Concepcion, Chile (gy.csato.ch@gmail.com)
Olivier Kneuss
Affiliation:
Departamento de Matemática, Universidade Federal do, Rio de Janeiro, Brasil (olivier.kneuss@gmail.com)
Dhanya Rajendran
Affiliation:
Departamento de Ingenería Matemática, Universidad de Concepción, Concepcion, Chile (dhanya.tr@gmail.com)

Abstract

In this paper, we study under what boundary conditions the inequality

$${\rm \Vert }\nabla \omega {\rm \Vert }_{L^2(\Omega )}^2 \les C({\rm \Vert }{\rm curl}\omega {\rm \Vert }_{L^2(\Omega )}^2 + {\rm \Vert }{\rm div}\omega {\rm \Vert }_{L^2(\Omega )}^2 + {\rm \Vert }\omega {\rm \Vert }_{L^2(\Omega )}^2 )$$
holds true. It is known that such an estimate holds if either the tangential or normal component of ω vanishes on the boundary ∂Ω. We show that the vanishing tangential component condition is a special case of a more general one. In two dimensions, we give an interpolation result between these two classical boundary conditions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amrouche, C., Bernardi, C., Dauge, M. and Girault, V.. Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998), 823864.Google Scholar
2Arnold, N., Falk, S. and Winther, R.. Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006), 1155.Google Scholar
3Bernard, J. M.. Density results in Sobolev spaces whose elements vanish on a part of the boundary. Chin. Ann. Math. Ser. B 32 (2011), 823846.Google Scholar
4Ben Belgacem, F., Bernardi, C., Costabel, M. and Dauge, M.. Un résultat de densité pour les équations de Maxwell. C. R. Acad. Sci. Paris Sér. I Math 324 (1997), 731736.Google Scholar
5Bonizzoni, F., Buffa, A. and Nobile, F.. Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term. IMA J. Numer. Anal 34 (2014), 13281360.Google Scholar
6Ciarlet, P., Hazard, C. and Lohrengel, S.. Les équations de Maxwell dans un polyèdre: un résultat de densité. C. R. Acad. Sci. Paris Sŕ. I Math. 326 (1998), 13051310.Google Scholar
7Costabel, M.. A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Methods Appl. Sci. 12 (1990), 365368.Google Scholar
8Costabel, M.. A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl. 157 (1991), 527541.Google Scholar
9Costabel, M. and Dauge, M.. Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 849854.Google Scholar
10Csató, G.. Some boundary value problems for differential forms, Ph.D Thesis, EPFL Lausanne (2012).Google Scholar
11Csató, G.. On an integral formula for differential forms and its applications on manifolds with boundary. Analysis 33 (2013), 349366.Google Scholar
12Csató, G. and Dacorogna, B.. An identity involving exterior derivatives and applications to Gaffney inequality. Discrete Continuous Dynam. Syst., Series S 5 (2012), 531544.Google Scholar
13Csató, G., Dacorogna, B. and Kneuss, O.. The pullback equation for differential forms (Boston: Birkhäuser, 2012).Google Scholar
14Csató, G., Dacorogna, B. and Sil, S.. On the best constant in Gaffney inequality. J. Funct. Anal. 274 (2018), 461503.Google Scholar
15Dautray, R. and Lions, J. L.. Analyse mathématique et calcul numérique (Paris: Masson, 1988).Google Scholar
16Friedrichs, K. O.. Differential forms on Riemannian manifolds. Comm. Pure Appl. Math. 8 (1955), 551590.Google Scholar
17Gaffney, M. P.. The harmonic operator for exterior differential forms. Proc. Nat. Acad. of Sci. U. S. A. 37 (1951), 4850.Google Scholar
18Gaffney, M. P.. Hilbert space methods in the theory of harmonic integrals. Trans. Amer. Math. Soc 78 (1955), 426444.Google Scholar
19Girault, V. and Raviart, P. A.. Finite element approximation of the Navier–Stokes equations. Lecture Notes in Math.,vol. 749 (Berlin: Springer-Verlag, 1979).Google Scholar
20Gol'dshtein, V., Mitrea, I. and Mitrea, M.. Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds. Problems in mathematical analysis No. 52. J. Math. Sci. (N. Y.) 172 (2011), 347400.Google Scholar
21Grisvard, P.. Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics,vol. 24, (Advanced Publishing Program) (Boston, MA: Pitman, 1985).Google Scholar
22Grisvard, P.. Singularities in boundary value problems. Recherches en Mathématiques Appliquées,vol. 22 (Paris, Berlin: Masson, Springer-Verlag, 1992).Google Scholar
23Iwaniec, T. and Martin, G.. Geometric function theory and non-linear analysis (Oxford: Oxford University Press, 2001).Google Scholar
24Iwaniec, T., Scott, C. and Stroffolini, B.. Nonlinear Hodge theory on manifolds with boundary. Annali Mat. Pura Appl. 177 (1999), 37115.Google Scholar
25Jakab, T., Mitrea, I. and Mitrea, M.. On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains. Indiana Univ. Math. J. 58 (2009), 20432071.Google Scholar
26Mitrea, M.. Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domains. Forum Math. 13 (2001), 531567.Google Scholar
27Mitrea, D. and Mitrea, M.. Finite energy solutions of Maxwell's equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds. J. Funct. Anal. 190 (2002), 339417.Google Scholar
28Morrey, C. B.. A variational method in the theory of harmonic integrals II. Amer. J. Math. 78 (1956), 137170.Google Scholar
29Morrey, C. B.. Multiple integrals in the calculus of variations (Berlin: Springer-Verlag, 1966).Google Scholar
30Morrey, C. B. and Eells, J.. A variational method in the theory of harmonic integrals. Ann. of Math. 63 (1956), 91128.Google Scholar
31Schwarz, G.. Hodge decomposition – A method for solving boundary value problems. Lecture Notes in Math.,vol. 1607 (Berlin: Springer-Verlag, 1995).Google Scholar
32Taylor, M. E.. Partial differential equations, vol. 1 (New York: Springer-Verlag, 1996).Google Scholar
33Von Wahl, W.. Estimating ∇u by d ivu and c urlu. Math. Methods Appl. Sci. 15 (1992), 123143.Google Scholar