Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-09-27T13:10:29.771Z Has data issue: false hasContentIssue false

On global fractional Calderón–Zygmund regularity for the fractional Dirichlet problem on Lipschitz domains

Published online by Cambridge University Press:  01 August 2025

Xuelian Fu
Affiliation:
School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, People’s Republic of China (fuxl2023@lzu.edu.cn)
Wenxian Ma
Affiliation:
School of Mathematics and Statistics, Lanzhou University, Lanzhou, People’s Republic of China Department of Mathematics, University of Bielefeld, Bielefeld, Germany (mawx2021@lzu.edu.cn)
Sibei Yang*
Affiliation:
School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, People’s Republic of China (yangsb@lzu.edu.cn)
*
*Corresponding author.

Abstract

Let $n\ge2$, $s\in(0,1)$, and $\Omega\subset\mathbb{R}^n$ be a bounded Lipschitz domain. In this paper, we investigate the global (higher-order) Sobolev regularity of weak solutions to the fractional Dirichlet problem

\begin{equation*}\begin{cases}(-\Delta)^su=f \ \ & \text{in}\ \ \Omega,\\u=0 \ \ & \text{in}\ \ \mathbb{R}^n\setminus\Omega.\end{cases}\end{equation*}

Precisely, we prove that there exists a positive constant $\varepsilon\in(0,s]$ depending on n, s, and the Lipschitz constant of Ω such that, for any $t\in[\varepsilon,\min\{1+\varepsilon,2s\})$, when $f\in L^q(\Omega)$ with some $q\in(\frac{n}{2s-t},\infty]$, the weak solution u satisfies

\begin{equation*}\|u\|_{W^{t,p}(\mathbb{R}^n)}\le C\|f\|_{L^q(\Omega)}\end{equation*}

for all $p\in[1,\frac{1}{t-\varepsilon})$. In particular, when Ω is a bounded C1 domain or a bounded Lipschitz domain satisfying the uniform exterior ball condition, the aforementioned global regularity estimates hold with $\varepsilon=s$ and they are sharp in this case. Moreover, if Ω is a bounded $C^{1,\kappa}$ domain with $\kappa\in(0,s)$ or a bounded Lipschitz domain satisfying the uniform exterior ball condition, we further show the global BMO-Sobolev regularity estimate

\begin{equation*}\left\|(-\Delta)^{\frac{s}{2}}u\right\|_{\mathrm{BMO}(\mathbb{R}^n)}+\left\|\nabla^{s}u\right\|_{\mathrm{BMO}(\mathbb{R}^n)}\le C\|f\|_{L^q(\Omega)}\end{equation*}

for some $q\in(\frac{n}{s},\infty]$, which is sharp in the sense that the BMO norm can not be improved to the $L^\infty$ norm.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abatangelo, N. and Cozzi, M.. An elliptic boundary value problem with fractional nonlinearity. SIAM J. Math. Anal. 53 (2021), 35773601.10.1137/20M1342641CrossRefGoogle Scholar
Abdellaoui, B., Fernández, A. J., Leonori, T. and Younes, A.. Global fractional Calderón–Zygmund regularity. Commun. Contemp. Math. (2024) https://doi.org/10.1142/S02191997-2550004X.Google Scholar
Abdellaoui, B., and Peral, I.. Towards a deterministic KPZ equation with fractional diffusion: the stationary problem. Nonlinearity 31 (2018), 12601298.10.1088/1361-6544/aa9d62CrossRefGoogle Scholar
Acosta, G. and Borthagaray, J. P.. A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55 (2017), 472495.10.1137/15M1033952CrossRefGoogle Scholar
Adams, R. A.. Sobolev spaces. In Pure and Applied Mathematics, Vol. 65, (Academic Press, New York-London, 1975).Google Scholar
Barrios, B., Figalli, A. and Ros-Oton, X.. Free boundary regularity in the parabolic fractional obstacle problem. Comm. Pure Appl. Math. 71 (2018), 21292159.10.1002/cpa.21745CrossRefGoogle Scholar
Barrios, B., Figalli, A. and Ros-Oton, X.. Global regularity for the free boundary in the obstacle problem for the fractional Laplacian. Amer. J. Math. 140 (2018), 415447.10.1353/ajm.2018.0010CrossRefGoogle Scholar
Bogdan, K.. The boundary Harnack principle for the fractional Laplacian. Studia Math. 123 (1997), 4380.10.4064/sm-123-1-43-80CrossRefGoogle Scholar
Bogdan, K.. Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29 (1999), 227243.10.32917/hmj/1206125005CrossRefGoogle Scholar
Bogdan, K., Kulczycki, T. and Nowak, A.. Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes. Illinois J. Math. 46 (2002), 541556.10.1215/ijm/1258136210CrossRefGoogle Scholar
Borthagaray, J. P. and Nochetto, R. H.. Besov regularity for the Dirichlet integral fractional Laplacian in Lipschitz domains. J. Funct. Anal. 284 (2023), 109829.10.1016/j.jfa.2022.109829CrossRefGoogle Scholar
Borthagaray, J. P. and Nochetto, R. H.. Constructive approximation on graded meshes for the integral fractional Laplacian. Constr. Approx. 57 (2023), 463487.10.1007/s00365-023-09617-5CrossRefGoogle Scholar
Bourgain, J., Brezis, H. and Mironescu, P.. Another look at Sobolev spaces. In Optimal Control and Partial Differential Equations, pp. 439455 (IOS, Amsterdam, 2001).Google Scholar
Bourgain, J., Brezis, H. and Mironescu, P.. Limiting embedding theorems for $W^{s,p}$ when $s\uparrow1$ and applications. J. Anal. Math. 87 (2002), 77101.10.1007/BF02868470CrossRefGoogle Scholar
Bucur, C., and Valdinoci, E.. Nonlocal Diffusion and Applications. Vol. 20, (Unione Matematica Italiana, Bologna, Springer, 2016).10.1007/978-3-319-28739-3CrossRefGoogle Scholar
Carbery, A., Maz’ya, V., Mitrea, M., and Rule, D.. The integrability of negative powers of the solution of the Saint Venant problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), 465531.Google Scholar
Carbotti, A., Dipierro, S. and Valdinoci, E.. Local Density of Solutions to Fractional Equations. De Gruyter Studies in Mathematics, Vol. 74, (De Gruyter, Berlin, 2019).Google Scholar
Chen, H., and Véron, L.. Semilinear fractional elliptic equations involving measures. J. Differential Equations 257 (2014), 14571486.10.1016/j.jde.2014.05.012CrossRefGoogle Scholar
Cozzi, M.. Interior regularity of solutions of non-local equations in Sobolev and Nikol’skii spaces. Ann. Mat. Pura Appl. (4) 196 (2017), 555578.10.1007/s10231-016-0586-3CrossRefGoogle Scholar
Dong, H., and Liu, Y.. Sobolev estimates for fractional parabolic equations with space-time non-local operators. Calc. Var. Partial Differential Equations 62 (2023), 96.10.1007/s00526-023-02431-8CrossRefGoogle Scholar
Dong, H. and Ryu, J.. Nonlocal elliptic and parabolic equations with general stable operators in weighted Sobolev spaces. SIAM J. Math. Anal. 56 (2024), 46234661.10.1137/23M160061XCrossRefGoogle Scholar
Dyda, B.. Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15 (2012), 536555.10.2478/s13540-012-0038-8CrossRefGoogle Scholar
Fernández-Real, X., and Ros-Oton, X.. Integro-differential Elliptic equations. Progress in Mathematics, Vol. 350, (Birkhäuser/Springer, Cham, 2024).Google Scholar
Grafakos, L.. Modern Fourier Analysis. Graduate Texts in Mathematics 250, 3rd, (Springer, New York, 2014).Google Scholar
Jerison, D. S. and Kenig, C. E.. Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46 (1982), 80147.10.1016/0001-8708(82)90055-XCrossRefGoogle Scholar
Kim, M. and Weidner, M.. Optimal boundary regularity and Green function estimates for nonlocal equations in divergence form. arXiv: 2408.12987.Google Scholar
Korvenpää, J., Kuusi, T., and Palatucci, G.. The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differential Equations 55 (2016), 63.10.1007/s00526-016-0999-2CrossRefGoogle Scholar
Kulczycki, T.. Gradient estimates of q-harmonic functions of fractional Schrödinger operator. Potential Anal. 39 (2013), 6998.10.1007/s11118-012-9322-9CrossRefGoogle Scholar
Leoni, G.. A first course in fractional Sobolev spaces. Graduate Studies in Mathematics, Vol.229, (American Mathematical Society, Providence, RI, 2023).Google Scholar
Liu, C. and Zhuo, R.. On the Dirichlet problem for fractional Laplace equation on a general domain. Commun. Contemp. Math. 27 (2025), 2450037.10.1142/S0219199724500378CrossRefGoogle Scholar
Ma, W. and Yang, S.. Global endpoint regularity estimates for the fractional Dirichlet problem. Math. Z. 306 (2024), 58.10.1007/s00209-024-03456-1CrossRefGoogle Scholar
Maz’ya, V. G.. Sobolev spaces with applications to elliptic partial differential equations. Grundlehren der Mathematischen Wissenschaften, second edition, revised and augmented, Vol. 342, (Springer, Heidelberg, 2011).Google Scholar
Pozrikidis, C.. The Fractional Laplacian. (CRC Press, Boca Raton, FL, 2016).10.1201/b19666CrossRefGoogle Scholar
Ros-Oton, X., and Serra, J.. The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9) 101 (2014), 275302.10.1016/j.matpur.2013.06.003CrossRefGoogle Scholar
Ros-Oton, X., and Serra, J.. The extremal solution for the fractional Laplacian. Calc. Var. Partial Differential Equations 50 (2014), 723750.10.1007/s00526-013-0653-1CrossRefGoogle Scholar
Ros-Oton, X., and Serra, J.. Boundary regularity estimates for nonlocal elliptic equations in C 1 and $C^{1,\unicode{x03B1}}$ domains. Ann. Mat. Pura Appl. (4) 196 (2017), 16371668.10.1007/s10231-016-0632-1CrossRefGoogle Scholar
Silvestre, L.. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007), 67112.10.1002/cpa.20153CrossRefGoogle Scholar