We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
\[ \begin{cases} \epsilon^{2}\mbox{div}(a(x)\nabla u(x))+f(x,u)=0 & \text{ in }\Omega,\\ \frac{\partial u}{\partial \nu}=0 & \text{ on }\partial \Omega,\\ \end{cases} \]
where $\Omega$ is a smooth and bounded domain in general dimensional space $\mathbb {R}^{N}$, $\epsilon >0$ is a small parameter and function $a$ is positive. We respectively obtain the locations of interior transition layers of the solutions of the above transition problems that are $L^{1}$-local minimizer and global minimizer of the associated energy functional.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Ahmad, S. and Ambrosetti, A.. A textbook on ordinary differential equations, 2nd Ed. (Switzerland: Springer International Publishing, 2015).Google Scholar
2
Alikakos, N. and Bates, P. W.. On the singular limit in a phase field model of phase transitions. Ann. Inst. H. Poincaré Anal. Non Linéaire5 (1988), 141–178.CrossRefGoogle Scholar
3
Alikakos, N., Bates, P. W. and Chen, X.. Periodic traveling waves and locating oscillating patterns in multidimensional domains. Trans. Am. Math. Soc. 351 (1999), 2777–2805.CrossRefGoogle Scholar
4
Alikakos, N. and Simpson, H. C.. A variational approach for a class of singular perturbation problems and applications. Proc. R. Soc. Edinburgh Sect. A107 (1987), 27–42.CrossRefGoogle Scholar
5
Allen, S. and Cahn, J. W.. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085–1095.CrossRefGoogle Scholar
6
Dancer, E. N. and Yan, S.. Multi-layer solutions for an elliptic problem. J. Differ. Eqns194 (2003), 382–405.CrossRefGoogle Scholar
7
Dancer, E. N. and Yan, S.. Construction of various types of solutions for an elliptic problem. Calc. Var. Partial Differ. Equ. 20 (2004), 93–118.CrossRefGoogle Scholar
8
del Pino, M.. Layers with nonsmooth interface in a semilinear elliptic problem. Commun. Partial Differ. Equ. 17 (1992), 1695–1708.10.1080/03605309208820900CrossRefGoogle Scholar
9
del Pino, M.. Radially symmetric internal layers in a semilinear elliptic system. Trans. Am. Math. Soc. 347 (1995), 4807–4837.CrossRefGoogle Scholar
10
del Pino, M., Kowalczyk, M. and Wei, J.. Resonance and interior layers in an inhomogenous phase transition model. SIAM J. Math. Anal. 38 (2007), 1542–1564.CrossRefGoogle Scholar
11
Do Nascimento, A. S.. Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in $N$-dimensional domains. J. Differ. Eqns190 (2003), 16–38.CrossRefGoogle Scholar
12
Do Nascimento, A. S. and Sônego, M.. The roles of diffusivity and curvature in patterns on surfaces of revolution. J. Math. Anal. Appl. 412 (2014), 1084–1096.CrossRefGoogle Scholar
13
Du, Z. and Gui, C.. Interior layers for an inhomogeneous Allen–Cahn equation. J. Differ. Eqns249 (2010), 215–239.CrossRefGoogle Scholar
14
Du, Z., Gui, C., Sire, Y. and Wei, J.. Layered solutions for a fractional inhomogeneous Allen–Cahn equation. Nonlinear Differ. Equ. Appl. 23 (2016), 29.CrossRefGoogle Scholar
15
Du, Z. and Lai, B.. Transition layers for an inhomogeneous Allen–Cahn equation in Riemannian manifolds. Discrete Contin. Dyn. Syst., A33 (2013), 1407–1429.CrossRefGoogle Scholar
16
Du, Z. and Wang, L.. Interface foliation for an inhomogeneous Allen–Cahn equation in Riemannian manifolds. Calc. Var. Partial Differ. Equ. 47 (2013), 343–381.CrossRefGoogle Scholar
17
Du, Z. and Wei, J.. Clustering layers for the Fife–Greenlee problem in $\mathbb {R}^{n}$. Proc. Royal Soc. Edinburgh A146 (2016), 107–139.CrossRefGoogle Scholar
18
Fife, P. C. and Greenlee, W. M.. Interior transition layers for elliptic boundary value problems with a small parameter. Russ. Math. Surveys 29:4 (1974), 103–131.CrossRefGoogle Scholar
19
Giusti, E.. Minimal surfaces and functions of bounded variation (Birkhäuser, Australia, 1984).CrossRefGoogle Scholar
20
Kohn, R. V. and Sternberg, P.. Local minimizers and singular perturbations. Proc. R. Soc. Edinburgh Sect. A11 (1989), 69–84.CrossRefGoogle Scholar
21
Li, F. and Nakashima, K.. Transition layer for a spatially inhomogeneous Allen–Cahn equation in multi-dimensional domains. Discrete Contin. Dyn. Syst., A32 (2012), 1391–1420.CrossRefGoogle Scholar
22
Mahmoudi, F., Malchiodi, A. and Wei, J.. Transition layer for the heterogeneous Allen–Cahn equation. Ann. Inst. H. Poincaré Anal. Non Linéaire25 (2008), 609–631.Google Scholar
23
Modica, L.. The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987), 123–142.CrossRefGoogle Scholar
24
Modica, L. and Mortola, S.. Un esempio di $\Gamma$-convergenza. Boll. Unione Mat. Ital. Sez. 14B (1977), 285–299.Google Scholar
25
Nakashima, Kimie. Stable transition layers in a balanced bistable equation. Differ. Integr. Equ. 13 (2000), 1025–1038.Google Scholar
26
Nakashima, Kimie. Multi-layered stationary solutions for a spatially inhomogeneous Allen–Cahn equation. J. Differ. Eqns191 (2003), 234–276.CrossRefGoogle Scholar
27
Nakashima, K. and Tanaka, K.. Clustering layers and boundary layers in spatially inhomogenerous phase transition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003), 107–143.CrossRefGoogle Scholar
28
Sônego, M.. On the internal transition layer to some inhomogeneous semilinear problems: interface location. J. Math. Anal. Appl. 502 (2021), 125266.CrossRefGoogle Scholar
29
Sotomayor, J.. Liçōes de equaçōes diferenciais ordinárias (IMPA: Rio de Janeiro, 1979).Google Scholar
30
Sternberg, P.. The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal.101 (1988), 209–260.CrossRefGoogle Scholar
31
Wei, J. and Yang, J.. Toda system and cluster phase transitional layers in an inhomogeneous phase transitional model. Asympt. Anal. 69 (2010), 175–218.Google Scholar
32
Yang, J. and Yang, X.. Clustered interior phase transition layers for an inhomogeneous Allen–Cahn equation on higher dimensional domain. Commun. Pure Appl. Anal. 12 (2013), 303–340.CrossRefGoogle Scholar
33
Zúñiga, A. and Agudelo, O.. A two end family of solutions for the inhomogeneous Allen–Cahn equation in $\mathbb {R}^{2}$. J. Differ. Eqns256 (2014), 157–205.CrossRefGoogle Scholar