Hostname: page-component-5b777bbd6c-sbgtn Total loading time: 0 Render date: 2025-06-21T23:02:25.046Z Has data issue: false hasContentIssue false

Fractional time differential equations as a singular limit of the Kobayashi–Warren–Carter system

Published online by Cambridge University Press:  11 December 2024

Yoshikazu Giga
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan (labgiga@ms.u-tokyo.ac.jp.)
Ayato Kubo
Affiliation:
Department of Mathematics, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan (kubo.ayato.j8@elms.hokudai.ac.jp)
Hirotoshi Kuroda
Affiliation:
Department of Mathematics, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan (kuro@math.sci.hokudai.ac.jp)
Jun Okamoto
Affiliation:
Institute for the Advanced Study of Human Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan (okamoto.jun.8n@kyoto-u.ac.jp)
Koya Sakakibara*
Affiliation:
Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi, Ishikawa 920-1192, Japan RIKEN iTHEMS, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan (ksakaki@se.kanazawa-u.ac.jp) (corresponding author)
Masaaki Uesaka
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan Arithmer Inc., ONEST Hongo Square 3F, 1-24-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Present address: DataLabs Inc., 8-6, Nihonbashi Kobunachou, Chuo-ku, Tokyo 103-0024, Japan (masaaki.uesaka@datalabs.jp)
*
*Corresponding author.

Abstract

This paper is concerned with a singular limit of the Kobayashi–Warren–Carter system, a phase field system modelling the evolutions of structures of grains. Under a suitable scaling, the limit system is formally derived when the interface thickness parameter tends to zero. Different from many other problems, it turns out that the limit system is a system involving fractional time derivatives, although the original system is a simple gradient flow. A rigorous derivation is given when the problem is reduced to a gradient flow of a single-well Modica–Mortola functional in a one-dimensional setting.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andreu-Vaillo, F., Caselles, V. and Mazón, J. M.. Parabolic quasilinear equations minimizing linear growth functionals, Progress in Mathematics, Vol. 223 (Birkhäuser Verlag, Basel, 2004).CrossRefGoogle Scholar
Brézis, H.. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5. Notas de Matemática, No. 50 (North-Holland Publishing Co.; American Elsevier Publishing Co. Inc, Amsterdam-London; New York, 1973).Google Scholar
Caffarelli, L. and Silvestre, L.. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32 (2007), 12451260.CrossRefGoogle Scholar
Giga, M.-H., Giga, Y. and Kobayashi, R.. Very singular diffusion equations, Taniguchi Conference on Mathematics Nara’98, 93–125, Advanced Studies in Pure Mathematics, Vol. 31 (Mathematical Society of Japan, Tokyo, 2001).Google Scholar
Giga, M.-H., Giga, Y. and Saal, J.. Nonlinear partial differential equations. Asymptotic behavior of solutions and self-similar solutions, Progress in Nonlinear Differential Equations and their Applications, Vol. 79 (Birkhäuser Boston, Ltd, Boston, MA, 2010).CrossRefGoogle Scholar
Giga, Y., Mitake, H. and Sato, S.. On the equivalence of viscosity solutions and distributional solutions for the time-fractional diffusion equation. J. Differential Equations 316 (2022), 364386.CrossRefGoogle Scholar
Giga, Y. and Namba, T.. Well-posedness of Hamilton–Jacobi equations with Caputo’s time fractional derivative. Comm. Partial Differential Equations 42 (2017), 10881120.CrossRefGoogle Scholar
Giga, Y., Okamoto, J., Sakakibara, K., and Uesaka, M.. On a singular limit of the Kobayashi–Warren–Carter energy. Indiana Univ. Math. J. 73 (2024), 14531491.CrossRefGoogle Scholar
Giga, Y., Okamoto, J. and Uesaka, M.. A finer singular limit of a single-well Modica–Mortola functional and its applications to the Kobayashi–Warren–Carter energy. Adv. Calc. Var. 16 (2023), 163182.CrossRefGoogle Scholar
Ito, A., Kenmochi, N. and Yamazaki, N.. A phase-field model of grain boundary motion. Appl. Math. 53 (2008), 433454.CrossRefGoogle Scholar
Ito, A., Kenmochi, N. and Yamazaki, N.. Weak solutions of grain boundary motion model with singularity. Rend. Mat. Appl. (7) 29 (2009), 5163.Google Scholar
Ito, A., Kenmochi, N. and Yamazaki, N.. Global solvability of a model for grain boundary motion with constraint. Discrete Contin. Dyn. Syst. Ser. S 5 (2012), 127146.Google Scholar
Kenmochi, N. and Yamazaki, N.. Large-time behavior of solutions to a phase-field model of grain boundary motion with constraint. Current advances in nonlinear analysis and related topics, GAKUTO International Series. Mathematical Sciences and Applications, Vol. 32, (Gakkōtosho, Tokyo, 2010).Google Scholar
Kobayashi, R., Warren, J. A. and Carter, W. C.. A continuum model of grain boundaries. Phys. D. 140 (2000), 141150.CrossRefGoogle Scholar
Kobayashi, R., Warren, J. A. and Carter, W. C.. Grain boundary model and singular diffusivity. Free boundary problems: theory and applications, II (Chiba, 1999), GAKUTO International Series. Mathematical Sciences and Applications, Vol. 14, (Gakkōtosho, Tokyo, 2000).Google Scholar
Kōmura, Y.. Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan. 19 (1967), 493507.CrossRefGoogle Scholar
Kubica, A., Ryszewska, K. and Yamamoto, M.. Time-fractional differential equations – a theoretical introduction, Springer Briefs in Mathematics (Springer, Singapore, 2020).CrossRefGoogle Scholar
Lunardi, A.. Analytic semigroups and optimal regularity in parabolic problems [2013 reprint of the 1995 original], Modern Birkhäuser Classics (Birkhäuser/Springer Basel AG, Basel, 1995).Google Scholar
Moll, S. and Shirakawa, K.. Existence of solutions to the Kobayashi–Warren–Carter system. Calc. Var. Partial Differential Equations 51 (2014), 621656.CrossRefGoogle Scholar
Moll, S., Shirakawa, K. and Watanabe, H.. Energy dissipative solutions to the Kobayashi–Warren–Carter system. Nonlinearity 30 (2017), 27522784.CrossRefGoogle Scholar
Moll, S., Shirakawa, K. and Watanabe, H.. Kobayashi–Warren–Carter type systems with nonhomogeneous Dirichlet boundary data for crystalline orientation. Nonlinear Anal. 217 (2022), .CrossRefGoogle Scholar
Namba, T.. On existence and uniqueness of viscosity solutions for second order fully nonlinear PDEs with Caputo time fractional derivatives. NoDEA Nonlinear Differential Equations Appl. 25 (2018), .CrossRefGoogle Scholar
Podlubny, I.. Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Vol. 198 (Academic Press, Inc., San Diego, CA, 1999).Google Scholar
Protter, M. H. and Weinberger, H. F.. Maximum principles in differential equations, Corrected reprint of the 1967 original (Springer-Verlag, New York, 1984).CrossRefGoogle Scholar
Sakamoto, K. and Yamamoto, M.. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011), 426447.CrossRefGoogle Scholar
Shirakawa, K. and Watanabe, H.. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete Contin. Dyn. Syst. Ser. S 7 (2014), 139159.Google Scholar
Shirakawa, K., Watanabe, H. and Yamazaki, N.. Solvability of one-dimensional phase field systems associated with grain boundary motion. Math. Ann. 356 (2013), 301330.CrossRefGoogle Scholar
Topp, E. and Yangari, M.. Existence and uniqueness for parabolic problems with Caputo time derivative. J. Differential Equations 262 (2017), 60186046.CrossRefGoogle Scholar
Warren, J. A., Kobayashi, R. and Carter, W. C.. Modeling grain boundaries using a phase-field technique. J. Cryst. Growth 211 (2000), 1820.CrossRefGoogle Scholar
Watanabe, H. and Shirakawa, K.. Qualitative properties of a one-dimensional phase-field system associated with grain boundary. Nonlinear analysis in interdisciplinary sciences – modellings, theory and simulations, GAKUTO International Series. Mathematical Sciences and Applications, Vol. 36, (Gakkōtosho, Tokyo, 2013).Google Scholar
Zacher, R.. Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces. Funkcial. Ekvac. 52 (2009), 118.CrossRefGoogle Scholar
Zacher, R.. Time fractional diffusion equations: solution concepts, regularity, and long-time behavior. Handbook of fractional calculus with applications, Vol. 2, (De Gruyter, Berlin, 2019).Google Scholar