Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T15:39:36.125Z Has data issue: false hasContentIssue false

Fractional eigenvalue problems that approximate Steklov eigenvalue problems

Published online by Cambridge University Press:  28 December 2017

Leandro M. Del Pezzo
Affiliation:
Departamento de Matemática and Instituto de Investigaciones Matemáticas ‘Luis A. Santaló’, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428), Av. Cantilo s/n. Buenos Aires, Argentina (ldpezzo@dm.uba.ar; jrossi@dm.uba.ar; asalort@dm.uba.ar)
Julio D. Rossi
Affiliation:
Departamento de Matemática and Instituto de Investigaciones Matemáticas ‘Luis A. Santaló’, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428), Av. Cantilo s/n. Buenos Aires, Argentina (ldpezzo@dm.uba.ar; jrossi@dm.uba.ar; asalort@dm.uba.ar)
Ariel M. Salort
Affiliation:
Departamento de Matemática and Instituto de Investigaciones Matemáticas ‘Luis A. Santaló’, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428), Av. Cantilo s/n. Buenos Aires, Argentina (ldpezzo@dm.uba.ar; jrossi@dm.uba.ar; asalort@dm.uba.ar)

Abstract

In this paper we analyse possible extensions of the classical Steklov eigenvalue problem to the fractional setting. In particular, we find a non-local eigenvalue problem of fractional type that approximates, when taking a suitable limit, the classical Steklov eigenvalue problem.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)