Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T11:58:48.062Z Has data issue: false hasContentIssue false

Existence of positive solutions for a class of semipositone problem in whole ℝN

Published online by Cambridge University Press:  05 April 2019

Claudianor O. Alves
Affiliation:
Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática, CEP: 58429-900, Campina Grande - PB, Brazil (coalves@mat.ufcg.edu.br); (angelo@mat.ufcg.edu.br)(jefferson@mat.ufcg.edu.br)
Angelo R. F. de Holanda
Affiliation:
Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática, CEP: 58429-900, Campina Grande - PB, Brazil (coalves@mat.ufcg.edu.br); (angelo@mat.ufcg.edu.br)(jefferson@mat.ufcg.edu.br)
Jefferson A. dos Santos
Affiliation:
Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática, CEP: 58429-900, Campina Grande - PB, Brazil (coalves@mat.ufcg.edu.br); (angelo@mat.ufcg.edu.br)(jefferson@mat.ufcg.edu.br)

Abstract

In this paper we show the existence of solution for the following class of semipositone problem P

$$\left\{\matrix{-\Delta u & = & h(x)(f(u)-a) & \hbox{in} & {\open R}^N, \cr u & \gt & 0 & \hbox{in} & {\open R}^N, \cr}\right.$$
where N ≥ 3, a > 0, h : ℝN → (0, + ∞) and f : [0, + ∞) → [0, + ∞) are continuous functions with f having a subcritical growth. The main tool used is the variational method together with estimates that involve the Riesz potential.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ali, I., Castro, A. and Shivaji, R.. Uniqueness and stability of nonnegative solutions for semipositone problems in a ball. Proc. Amer. Math. Soc. 117 (1993), 775782, (doi:10.2307/2159143).CrossRefGoogle Scholar
2Allegretto, W., Nistri, P. and Zecca, P.. Positive solutions of elliptic nonpositone problems. Differ. Integral Equ. 5 (1992), 95101.Google Scholar
3Alves, C. O., de Holanda, A. R. F. and dos Santos, J. A.. Existence of positive solutions for a class of semipositone quasilinear problems through Orlicz-Sobolev space, To appear in Proc. Amer. Math. Soc.Google Scholar
4Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical point theory and applications. J. Funct. Anal. 44 (1973), 349381.CrossRefGoogle Scholar
5Ambrosetti, A., Arcoya, D. and Buffoni, B.. Positive solutions for some semi-positone problems via bifurcation theory. Differ. Integral Equ. 7 (1994), 655663.Google Scholar
6Anuradha, V., Hai, D. D. and Shivaji, R.. Existence results for superlinear semipositone BVPâ's. Proc. Amer. Math. Soc. 124 (1996), 757763 (doi:10.1090/S0002-9939-96-03256-X.CrossRefGoogle Scholar
7Caldwell, S., Castro, A., Shivaji, R. and Unsurangsie, S.. Positive solutions for a classes of multiparameter elliptic semipositone problems. Electron. J. Diff. Eqns. 2007 (2007), paper 96, 110.Google Scholar
8Caldwell, S., Castro, A., Shivaji, R. and Unsurangsie, S.. Positive solutions for classes of multiparameter elliptic semipositone problems. Electron. J. Differ. Equ. 96 (2007), 10, (electronic).Google Scholar
9Castro, A. and Shivaji, R.. Nonnegative solutions for a class of nonpositone problems. Proc. Roy. Soc. Edin. 108 A (1988), 291302.CrossRefGoogle Scholar
10Castro, A., de Figueiredo, D. G. and Lopera, E.. Existence of positive for a semipositone p-Laplaciasn problem. Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), 475482.CrossRefGoogle Scholar
11Chhetri, M., Drábek, P. and Shivaji, R.. Existence of positive solutions for a class of p-Laplacian superlinear semipositone problems. Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), 925936, (doi:10.1017/S0308210515000220.Google Scholar
12Costa, D. G., Tehrani, H. and Yang, J.. On a variational approach to existence and multiplicity results for semipositone problems. Electron. J. Differ. Equ. 11 (2006), 10.Google Scholar
13Costa, D. G., Quoirin, H. R. and Tehrani, H.. A variational approach to superlinear semipositone elliptic problems. Proc. Amer. Math. Soc. 145 (2017), 26612675.CrossRefGoogle Scholar
14Drame, A. K. and Costa, D. G.. On positive solutions of one-dimensional semipositone equations with nonlinear boundary conditions. Appl. Math. Lett. 25 (2012), 24112416, (doi:10.1016/j.aml.2012.07.015.CrossRefGoogle Scholar
15Struwe, M.. Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems (Berlin: Springer, 1990).CrossRefGoogle Scholar
16Willem, M.. Minimax theorems (Boston: Birkhäuser, 1996).CrossRefGoogle Scholar