Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T03:53:01.519Z Has data issue: false hasContentIssue false

Composite rational functions which are powers*

Published online by Cambridge University Press:  14 November 2011

S. D. Cohen
Affiliation:
Department of Mathematics, University of Glasgow

Synopsis

A description is given of the rational functions A(X), B(X) over a field Ω for which A(B(X)) is an nth power in Ω(X).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Block, H. D. and Thielman, H. P.. Commutative polynomials. Quart. J. Math. Oxford Ser. 2 (1951), 241243.CrossRefGoogle Scholar
2Engstrom, H. T., Polynomial substitutions. Amer. J. Math. 63 (1941), 249255.CrossRefGoogle Scholar
3Fried, M.. Arithmetical properties of function fields (II). Acta Arith. 25 (1974), 225258.CrossRefGoogle Scholar
4Fried, M.. On a theorem of Ritt and related Diophantine problems. J. Reine Angew. Math. 264 (1973), 4055.Google Scholar
5Fried, M. D. and MacRae, R. E.. On the invariance of chains of fields. Illinois J. Math. 13 (1969), 165171.CrossRefGoogle Scholar
6Ribenboim, P.. Polynomials whose values are powers. J. Reine Angew. Math. 268/269 (1974), 3440.Google Scholar
7Ritt, J. R.. Prime and compositive polynomials. Trans. Amer. Math. Soc. 23 (1922), 5166.CrossRefGoogle Scholar
8Ritt, J. F.. Permutable rational functions. Trans. Amer. Math. Soc. 25 (1923), 399448.CrossRefGoogle Scholar
9Walker, A. G.. Commutative functions. Quart. J. Math. Oxford Ser. 17 (1946), 6592.CrossRefGoogle Scholar