No CrossRef data available.
Published online by Cambridge University Press: 17 January 2024
In this paper, we classify simple smooth modules over the mirror Heisenberg–Virasoro algebra ${\mathfrak {D}}$, and simple smooth modules over the twisted Heisenberg–Virasoro algebra $\bar {\mathfrak {D}}$
with non-zero level. To this end we generalize Sugawara operators to smooth modules over the Heisenberg algebra, and develop new techniques. As applications, we characterize simple Whittaker modules and simple highest weight modules over ${\mathfrak {D}}$
. A vertex-algebraic interpretation of our result is the classification of simple weak twisted and untwisted modules over the Heisenberg–Virasoro vertex algebras. We also present a few examples of simple smooth ${\mathfrak {D}}$
-modules and $\bar {\mathfrak {D}}$
-modules induced from simple modules over finite dimensional solvable Lie algebras, that are not tensor product modules of Virasoro modules and Heisenberg modules. This is very different from the case of simple highest weight modules over $\mathfrak {D}$
and $\bar {\mathfrak {D}}$
which are always tensor products of simple Virasoro modules and simple Heisenberg modules.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.