Hostname: page-component-cb9f654ff-qc88w Total loading time: 0 Render date: 2025-09-09T20:26:59.099Z Has data issue: false hasContentIssue false

A central limit theorem for partial transposes of multipartite Wishart matrices

Published online by Cambridge University Press:  08 September 2025

Gyunam Park
Affiliation:
Department of Mathematics Education, Seoul National University, Gwanak-Ro 1, Gwanak-Gu, Seoul, Republic of Korea (pgn518@snu.ac.kr)
Sang-Gyun Youn*
Affiliation:
Department of Mathematics Education, Seoul National University, Gwanak-Ro 1, Gwanak-Gu, Seoul, Republic of Korea (s.youn@snu.ac.kr)
*
*Corresponding author.

Abstract

The partial transposition from quantum information theory provides a new source to distill the so-called asymptotic freeness without the assumption of classical independence between random matrices. Indeed, a recent paper [10] established asymptotic freeness between partial transposes in the bipartite situation. In this paper, we prove almost sure asymptotic freeness in the general multipartite situation and establish a central limit theorem for the partial transposes.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chen, L., Yang, Y., and Tang, W.-S.. Positive-partial-transpose square conjecture for n = 3. Phys. Rev. A. 99 (2019) 012337.10.1103/PhysRevA.99.012337CrossRefGoogle Scholar
Choi, M.-D.. Positive linear maps, operator algebras and applications (Kingston, 1980). Proc. Sympos. Pure Math. 38 Part 2, Amer. Math. Soc. (1982), 583590.10.1090/pspum/038.2/9850CrossRefGoogle Scholar
Christandl, M.. PPT square conjecture, Banff International Research Station Workshop: Operator Structures in Quantum Information Theory, (2012).Google Scholar
Christandl, M., Müller-Hermes, A. and Wolf, M. M.. When do composed maps become entanglement breaking?. Ann. Henri Poincaré. 20 (2019), 22952322.10.1007/s00023-019-00774-7CrossRefGoogle Scholar
Dykema, K.. On certain free product factors via an extended matrix model. J. Funct. Anal. 112 (1993), 3160.10.1006/jfan.1993.1025CrossRefGoogle Scholar
Horodecki, M., Horodecki, P. and Horodecki, R.. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A. 223 (1996), 18.10.1016/S0375-9601(96)00706-2CrossRefGoogle Scholar
Kennedy, M., Manor, N. A. and Paulsen, V.I. Composition of PPT maps. Quantum Inf. Comput. 18 (2018), 472480.Google Scholar
Michael, J. W. H.. Random quantum correlations and density operator distributions. Phys. Lett. A. 242 (1998), 123129.Google Scholar
Mingo, J. A. and Popa, M.. Real second order freeness and Haar orthogonal matrices. J. Math. Phys. 54 (2013), 051701, 35.10.1063/1.4804168CrossRefGoogle Scholar
Mingo, J. A. and Popa, M.. Freeness and the partial transposes of Wishart random matrices. Canad. J. Math. 71 (2019), 659681.10.4153/CJM-2018-002-2CrossRefGoogle Scholar
Mingo, J. A. and Popa, M.. The partial transpose and asymptotic free independence for Wishart random matrices, II. Pacific J. Math. 317 (2022), 387421.10.2140/pjm.2022.317.387CrossRefGoogle Scholar
Mingo, J. A. and Speicher, R.. Free Probability and Random Matrices. Of Fields Institute Monographs., Vol. 35, (Springer, New York, NY, 2017).Google Scholar
Nica, A.. Asymptotically free families of random unitaries in symmetric groups. Pacific J. Math. 157 (1993), 295310.10.2140/pjm.1993.157.295CrossRefGoogle Scholar
Nica, A. and Speicher, R.. Lectures on the Combinatorics of Free Probability. Of London Mathematical Society Lecture Note Series., Vol. 335, (Cambridge University Press, Cambridge, 2006).Google Scholar
Peres, A.. Separability criterion for density matrices. Phys. Rev. Lett. 77 (1996), 14131415.10.1103/PhysRevLett.77.1413CrossRefGoogle ScholarPubMed
Peter, W. S.. Additivity of the classical capacity of entanglement-breaking quantum channels. J. Math. Phys. 43 (2002), 43344340.Google Scholar
Rahaman, M., Jaques, S. and Paulsen, V.I. Eventually entanglement breaking maps. J. Math. Phys. 59 (2018), 062201, 11.10.1063/1.5024385CrossRefGoogle Scholar
Samuel, L. B.. Geometry of quantum inference. Phys. Lett. A. 219 (1996), 169174.Google Scholar
Smith, G. and John, A. S.. Detecting incapacity of a quantum channel. Phys. Rev. Lett. 108 (2012), 230507.10.1103/PhysRevLett.108.230507CrossRefGoogle ScholarPubMed
Sommers, H.-J. and Zyczkowski, K.. Statistical properties of random density matrices. J. Phys. A. 37 (2004), 84578466.10.1088/0305-4470/37/35/004CrossRefGoogle Scholar
Voiculescu, D.. Limit laws for random matrices and free products. Invent. Math. 104 (1991), 201220.10.1007/BF01245072CrossRefGoogle Scholar
Voiculescu, D.. A strengthened asymptotic freeness result for random matrices with applications to free entropy. Internat. Math. Res. Notices. 1 (1998), 4163.10.1155/S107379289800004XCrossRefGoogle Scholar
Woronowicz, S. L.. Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10 (1976), 165183.10.1016/0034-4877(76)90038-0CrossRefGoogle Scholar
Zyczkowski, K. and Sommers, H.-J.. Induced measures in the space of mixed quantum states. J. Phys. A. 34 (2001), 71117125.10.1088/0305-4470/34/35/335CrossRefGoogle Scholar