Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T18:28:53.183Z Has data issue: false hasContentIssue false

Approximate controllability of the semilinear heat equation

Published online by Cambridge University Press:  14 November 2011

Caroline Fabre
Affiliation:
Université Paris XII-Val de Marne, U.F.R. Sciences, Laboratoire de Mathématiques, Av. du Général de Gaulle, 94010 Creteil Cedex and Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Jean-Pierre Puel
Affiliation:
Université de Versailles Saint-Quentin, Département de Mathématiques and Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Enrike Zuazua
Affiliation:
Departamento de Matemática Aplicada, Universidad Complutense, 28040 Madrid, Spain

Abstract

This article is concerned with the study of approximate controllability for the semilinear heat equation in a bounded domain Ω when the control acts on any open and nonempty subset of Ω or on a part of the boundary. In the case of both an internal and a boundary control, the approximate controllability in LP(Ω) for 1 ≦ p < + ∞ is proved when the nonlinearity is globally Lipschitz with a control in L. In the case of the interior control, we also prove approximate controllability in C0(Ω). The proof combines a variational approach to the controllability problem for linear equations and a fixed point method. We also prove that the control can be taken to be of “quasi bang-bang” form.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Angenent, S.. The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390 (1988), 7996.Google Scholar
2Aubin, J. P.. L'analyse Non Linéaire et ses Motivations Économiques (Paris: Masson, 1984).Google Scholar
3Cazenave, T. and Haraux, A.. Introduction aux problèmes d'évolution semi-linéaires, Collection S.M.A.I. Mathématiques et applications (Paris: Ellipses, 1990).Google Scholar
4Diaz, J. I.. Sur la contrôlabilité approchée des inéquations variationnelles et d'autres problèmes paraboliques non linéaires. C. R. Acad. Sci. Paris Sér. 1 Math. 312 (1991), 519522.Google Scholar
5Fabre, C., Puel, J. P. and Zuazua, E.. contrôlabilité approchée de l'équation de la chaleur semilinéaire. C. R. Acad. Sci. Paris Sér. 1 Math. 315 (1992), 807812.Google Scholar
6Friedman, A.. Partial Differential Equations of Parabolic Type (New York:Prentice-Hall, 1964).Google Scholar
7Henry, J.. Etude de la contrôlabilité de certaines équations paraboliques (Thèse d'Etat de l'Université Paris VI,1978).Google Scholar
8Ladyzenskaja, O. A., Solonnikov, V. A. and Ural'ceva, N. N.. Linear and Quasilinear Equations of Parabolic Type (Providence, R.I.: American Mathematical Society, 1968).CrossRefGoogle Scholar
9Lions, J. L.. contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles (Paris: Dunod, collection E.M, 1968).Google Scholar
10Lions, J. L.. Exact controllability, stabilization and perturbations for distributed systems. (Boston: SIAM, 1986); Siam Rev. 30 (1988), 168.Google Scholar
11Lions, J. L.. contrôlabilité exacte, perturbations et stabilization des systèmes distribués. Tome 1, contrôlabilité exacte, Collection R.M.A 8 (Paris: Masson, 1988).Google Scholar
12Lions, J. L.. Remarques sur la contrôlabilité approchée. Proceedings of “Jornadas Hispano-Francesas sobre control de Sistemas Distribuidos”, University of Maálaga, Spain, October, 1990.Google Scholar
13Lions, J. L.. Remarks on approximate controllability. Israel J. of Maths. (to appear).Google Scholar
14Lions, J. L. and Magenes, E.. Problèmes aux limites non homogènes et applications, Vols. 1 and 2 (Paris: Dunod, 1968).Google Scholar
15Mizohata, S.. Unicité de prolongement des solutions pour quelques opérateurs différentiels paraboliques. Mem. Coll. Sci. Univ. Kyoto, Ser. A 31 (3) (1958), 219239.Google Scholar
16Naito, K.. On controllability for a nonlinear Volterra equation. Nonlinear Anal. 18 (1992), 99108.CrossRefGoogle Scholar
17Naito, K. and Seidman, T. I.. Invariance of the approximately reachable set under nonlinear perturbations. SIAM J. control Optim. 29 (3) (1991), 731750.CrossRefGoogle Scholar
18Pazy, A.. Semigroups of Linear Operators and Applications to Partial Differential Equations (Berlin: Springer, 1983).CrossRefGoogle Scholar
19Saut, J. C. and Scheurer, B.. Unique continuation for some evolution equations. J. Differential Equations 66 (1987), 118139.CrossRefGoogle Scholar
20Schmidt, E. J. P. G. and Week, N.. On the boundary behaviour of solutions to elliptic and parabolic equations—Applications to boundary control for parabolic equations. Siam. J. control Optim. 16 (4) (1978), 593598.CrossRefGoogle Scholar
21Zuazua, E.. Exact boundary controllability for the semilinear wave equation. In Nonlinear Differential Equations and Their Applications, eds. Brezis, H. and Lions, J. L., Séminaire du Collège de France 1987–1988, Research Notes in Mathematics 10, 357391 (London: Pitman, 1991).Google Scholar