Published online by Cambridge University Press: 14 August 2017
In this paper we are interested in the microscopic modelling of a two-dimensional two-well problem that arises from the square-to-rectangular transformation in (two-dimensional) shape-memory materials. In this discrete set-up, we focus on the surface energy scaling regime and further analyse the Hamiltonian that was introduced by Kitavtsev et al. in 2015. It turns out that this class of Hamiltonians allows for a direct control of the discrete second-order gradients and for a one-sided comparison with a two-dimensional spin system. Using this and relying on the ideas of Conti and Schweizer, which were developed for a continuous analogue of the model under consideration, we derive a (first-order) continuum limit. This shows the emergence of surface energy in the form of a sharp-interface limiting model as well the explicit structure of the minimizers to the latter.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.