Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:44:21.629Z Has data issue: false hasContentIssue false

Singular limits and properties of solutions of some degenerate elliptic and parabolic equations

Published online by Cambridge University Press:  27 December 2018

Kin Ming Hui
Affiliation:
Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan, Republic of Korea (kmhui@gate.sinica.edu.tw)
Sunghoon Kim*
Affiliation:
Department of Mathematics, School of Natural Sciences, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea (math.s.kim@catholic.ac.kr)
*
*Corresponding author.

Abstract

Let n ⩾ 3, 0 ⩽ m < n − 2/n, ρ1 > 0, $\beta>\beta_{0}^{(m)}=(({m\rho_{1}})/({n-2-nm}))$, αm = ((2β + ρ1)/(1 − m)) and α = 2β+ρ1. For any λ > 0, we prove the uniqueness of radially symmetric solution υ(m) of Δ(υm/m) + αmυ + βx · ∇υ = 0, υ > 0, in ℝn∖{0} which satisfies $\lim\nolimits_{|x|\to 0|}|x|^{\alpha _m/\beta }v^{(m)}(x) = \lambda ^{-((\rho _1)/((1-m)\beta ))}$ and obtain higher order estimates of υ(m) near the blow-up point x = 0. We prove that as m → 0+, υ(m) converges uniformly in C2(K) for any compact subset K of ℝn∖{0} to the solution υ of Δlog υ + α υ + β x·∇ υ = 0, υ > 0, in ℝn\{0}, which satisfies $\lim\nolimits_{ \vert x \vert \to 0} \vert x \vert ^{{\alpha}/{\beta}}v(x)=\lambda^{-{\rho_{1}}/{\beta}}$. We also prove that if the solution u(m) of ut = Δ (um/m), u > 0, in (ℝn∖{0}) × (0, T) which blows up near {0} × (0, T) at the rate $ \vert x \vert ^{-{\alpha_{m}}/{\beta}}$ satisfies some mild growth condition on (ℝn∖{0}) × (0, T), then as m → 0+, u(m) converges uniformly in C2 + θ, 1 + θ/2(K) for some constant θ ∈ (0, 1) and any compact subset K of (ℝn∖{0}) × (0, T) to the solution of ut = Δlog u, u > 0, in (ℝn∖{0}) × (0, T). As a consequence of the proof, we obtain existence of a unique radially symmetric solution υ(0) of Δ log υ + α υ + β x·∇ υ = 0, υ > 0, in ℝn∖{0}, which satisfies $\lim\nolimits_{ \vert x \vert \to 0} \vert x \vert ^{{\alpha}/{\beta}}v(x)=\lambda^{-{\rho_{1}}/{\beta}}$.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aronson, D. G.. The porous medium equation, CIME Lectures, in Some problems in Nonlinear Diffusion, Lecture Notes in Mathematics 1224 (New York: Springer-Verlag, 1986).Google Scholar
2Chasseigne, E. and Vázquez, J. L.. Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities. Arch. Ration. Mech. Anal. 164(2) (2002), 133187.Google Scholar
3Daskalopoulos, P. and Kenig, C. E.. Degenerate diffusion-initial value problems and local regularity theory, Tracts in Mathematics vol. 1. European Math. Soc. (2007), 1198.Google Scholar
4Daskalopoulos, P. and Sesum, N.. On the extinction profile of solutions to fast diffusion. J. Reine Angew. Math. 622 (2008), 95119.Google Scholar
5Daskalopoulos, P. and Sesum, N.. The classification of locally conformally flat Yamabe solitons. Adv. Math. 240 (2013), 346369.Google Scholar
6Daskalopoulos, P., King, J. and Sesum, N.. Extinction profile of complete non-compact solutions to the Yamabe flow, arXiv:1306.0859.Google Scholar
7del Pino, M. and Sáez, M.. On the extinction profile for solutions of $u_{t}=\Delta u^{((n-2)/(n+2))}$. Indiana Univ. Math. J. 50(1) (2001), 611628.Google Scholar
8Di Benedetto, E., Gianazza, U. and Liao, N.. Logarithmically singular parabolic equations as limits of the porous medium equation. Nonlinear Anal. TMA 75(12) (2012), 45134533.Google Scholar
9Fila, M. and Winkler, M.. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Commun. Pure Appl. Anal. 14(1) (2015), 107119.Google Scholar
10Fila, M. and Winkler, M.. Optimal rates of convergence to the singular Barenblatt profile for the fast diffusion equation. Proc. Roy. Soc. Edinburgh Sect. A 146(2) (2016a), 309324.Google Scholar
11Fila, M. and Winkler, M.. Rate of convergence to separable solutions of the fast diffusion equation. Israel J. Math. 213(1) (2016b), 132.Google Scholar
12Fila, M. and Winkler, M.. Slow growth of solutions of super-fast diffusion equations with unbounded initial data. J. London Math. Soc. (2) 95 (2017), 659683.Google Scholar
13Fila, M., Vázquez, J. L., Winkler, M. and Yanagida, E.. Rate of convergence to Barenblatt profiles for the fast diffusion equation. Arch. Rational Mech. Anal. 204(2) (2012), 599625.Google Scholar
14Hamilton, R.. The Ricci flow on surfaces, in Mathematics and General Relativity. Contemporary Mathematics 71 (1988), 237261.Google Scholar
15Herrero, M. A. and Pierre, M.. The Cauchy problem for $u_{t}=\Delta u^{m}$ for 0 < m < 1. Trans. Amer. Math. Soc. 291(1) (1985), 145158.Google Scholar
16Hsu, S. Y.. Classification of radially symmetric self-similar solutions of $u_{t}=\Delta\log u$ in higher dimensions. Differ. Integral Equ. 18(10) (2005), 11751192.Google Scholar
17Hsu, S. Y.. Singular limit and exact decay rate of a nonlinear elliptic equation. Nonlinear Anal. 75(7) (2012), 34433455.Google Scholar
18Hsu, S. Y.. Existence and asymptotic behaviour of solutions of the very fast diffusion equation. Manuscripta Math. 140(3–4) (2013), 441460.Google Scholar
19Hsu, S. Y.. Exact decay rate of a nonlinear elliptic equation related to the Yamabe flow. Proc. Amer. Math. Soc. 142(12) (2014), 42394249.Google Scholar
20Hui, K. M.. Singular limit of solutions of the equation $u_{t}=\Delta (u^{m}/m)$ as m → 0. Pacific J. Math. 187(2) (1999), 297316.Google Scholar
21Hui, K. M.. On some Dirichlet and Cauchy problems for a singular diffusion equation. Differential Integral Equations 15(7) (2002), 769804.Google Scholar
22Hui, K. M.. Singular limit of solutions of the very fast diffusion equation. Nonlinear Anal. TMA 68 (2008), 11201147.Google Scholar
23Hui, K. M.. Asymptotic behaviour of solutions of the fast diffusion equation near its extinction time. J. Math. Anal. Appl., 454 (2) (2017), 695715.Google Scholar
24Kato, T.. Schrödinger operator with singular potentials. Israel J. Math. 13 (1973), 135148.Google Scholar
25Kim, S. and Lee, K.-A.. Smooth solution for the porous medium equation in a bounded domain. J. Differ. Equ. 247(4) (2009), 10641095.Google Scholar
26Ladyzenskaya, O. A., Solonnikov, V. A. and Uraltceva, N. N.. Linear and quasilinear equation of parabolic type. Translations of Mathematical Monographs, vol. 23 (Providence, RI: American Mathematical Society, 1968).Google Scholar
27Vázquez, J. L.. Nonexistence of solutions for nonlinear heat equation of fast-diffusion type. J. Math. Pures Appl. 71 (1992), 503526.Google Scholar
28Vázquez, J. L.. Smoothing and decay estimates for nonlinear diffusion equations. Oxford Lecture Series in Mathematics and its Applications, vol. 33 (Oxford: Oxford University Press, 2006).Google Scholar
29Vázquez, J. L.. The porous medium equation. Mathematical theory, Oxford Mathematical Monographs (Oxford: The Clarendon Press, Oxford University Press, 2007a).Google Scholar
30Vázquez, J. L.. Finite-time blow-down in the evolution of point masses by planar logarithmic diffusion. Discrete Contin. Dyn. Syst. 19(1) (2007b), 135.Google Scholar
31Vázquez, J. L. and Winkler, M.. Highly time-oscillating solutions for very fast diffusion equations. J. Evol. Equ. 11(3) (2011a), 725742.Google Scholar
32Vázquez, J. L. and Winkler, M.. The evolution of singularities in fast diffusion equations: infinite-time blow-down. SIAM J. Math. Anal. 43(4) (2011b), 14991535.Google Scholar
33Wu, L. F.. The Ricci flow on complete R 2. Comm. Analysis Geom. 1 (1993), 439472.Google Scholar
34Ye, R.. Global existence and convergence of Yamabe flow. J. Differ. Geom. 39(1) (1994), 3550.Google Scholar