Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T20:29:02.575Z Has data issue: false hasContentIssue false

A second order Dirichlet differential expression that is not bounded below

Published online by Cambridge University Press:  14 November 2011

Man Kam Kwong
Affiliation:
Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115, U.S.A.

Synopsis

We give in this note a second order singular differential expression of the form Lf = −f″ + qf on [0, ∞) that satisfies the Dirichlet condition but that is not bounded below.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amos, R. J. and Everitt, W. N.. On a quadratic integral inequality. Proc. Roy. Soc. Edinb. Sect. A 78 (1978), 241256.CrossRefGoogle Scholar
2Bradley, J. S. and Everitt, W. N.. Inequalities associated with regular and singular problems in the calculus of variations. Trans. Amer. Math. Soc. 182 (1973), 303321.CrossRefGoogle Scholar
3Bradley, J. S. and Everitt, W. N.. A singular integral inequality on a bounded interval. Proc. Amer. Math. Soc. 61 (1976), 2935.CrossRefGoogle Scholar
4Kalf, H.. Remarks on some Dirichlet type results for semibounded Sturm-LiouviUe operators. Math. Ann. 210 (1974), 197205.CrossRefGoogle Scholar
5Kato, T.. Perturbation Theory for Linear Operators (Berlin: Springer, 1966).Google Scholar
6Rellich, F.. Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung. Math. Ann. 122 (1951), 343368.CrossRefGoogle Scholar
7Wintner, A.. A criterion of oscillatory stability. Quart. Appl. Math. 7 (1949), 115117.CrossRefGoogle Scholar