Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T01:38:24.172Z Has data issue: false hasContentIssue false

Prescribing nearly constant curvatures on balls

Published online by Cambridge University Press:  27 October 2023

Luca Battaglia
Affiliation:
Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy (luca.battaglia@uniroma3.it)
Sergio Cruz-Blázquez
Affiliation:
Departamento de Análisis Matemático, Universidad de Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain (sergiocruz@ugr.es)
Angela Pistoia
Affiliation:
Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Via Antonio Scarpa 10, 00161 Roma, Italy (angela.pistoia@uniroma1.it)

Abstract

In this paper, we address two boundary cases of the classical Kazdan–Warner problem. More precisely, we consider the problem of prescribing the Gaussian and boundary geodesic curvature on a disk of $\mathbb {R}^2$, and the scalar and mean curvature on a ball in higher dimensions, via a conformal change of the metric. We deal with the case of negative interior curvature and positive boundary curvature. Using a Ljapunov–Schmidt procedure, we obtain new existence results when the prescribed functions are close to constants.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelhedi, W., Chtioui, H. and Ahmedou, M. O.. A Morse theoretical approach for the boundary mean curvature problem on $B^4$. J. Funct. Anal. 254 (2008), 13071341.CrossRefGoogle Scholar
Almaraz, S. M.. An existence theorem of conformal scalar flat metrics on manifolds with boundary. Pacific J. Math. 248 (2010), 122.CrossRefGoogle Scholar
Ambrosetti, A., Li, Y. Y. and Malchiodi, A.. On the Yamabe problem and the scalar curvature problems under boundary conditions. Math. Ann. 322 (2002), 667699.CrossRefGoogle Scholar
Aubin, T.. Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics (Springer-Verlag, Berlin, 1998).CrossRefGoogle Scholar
Battaglia, L., Cozzi, M., Fernández, A. J. and Pistoia, A.. Non-uniqueness for the nonlocal Liouville equation in $\mathbb {R}$ and applications. SIAM J. Math. Anal. 55 (2023), 48164842.CrossRefGoogle Scholar
Battaglia, L., Medina, M. and Pistoia, A.. Large conformal metrics with prescribed Gaussian and geodesic curvatures. Calc. Var. Partial Differ. Equ. 60 (2021), 39.CrossRefGoogle Scholar
Ben Ayed, M., El Mehdi, K. and Ahmedou, M. O.. Prescribing the scalar curvature under minimal boundary conditions on the half sphere. Adv. Nonlinear Stud. 2 (2002), 93116.CrossRefGoogle Scholar
Ben Ayed, M., El Mehdi, K. and Ahmedou, M. O.. The scalar curvature problem on the four dimensional half sphere. Calc. Var. Part. Differ. Equ. 22 (2005), 465482.CrossRefGoogle Scholar
Berger, M.. On Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds. J. Diff. Geom. 5 (1971), 325332.Google Scholar
Brendle, S.. A family of curvature flows on surfaces with boundary. Simon Math. Z. 241 (2002), 829869.CrossRefGoogle Scholar
Brendle, S. and Chen, S. Y. S.. An existence theorem for the Yamabe problem on manifolds with boundary. J. Eur. Math. Soc. 16 (2014), 9911016.CrossRefGoogle Scholar
Chang, A., Xu, X. and Yang, P.. A perturbation result for prescribing mean curvature. Math. Ann. 310 (1998), 473496.Google Scholar
Chang, K. C. and Liu, J. Q.. A prescribing geodesic curvature problem. Math. Z. 223 (1996), 343365.CrossRefGoogle Scholar
Chang, S. Y. A. and Yang, P. C.. Conformal deformation of metrics on ${\mathbb {S}}^2$. J. Diff. Geom. 27 (1988), 259296.Google Scholar
Chen, X., Ho, P. T. and Sun, L.. Liming prescribed scalar curvature plus mean curvature flows in compact manifolds with boundary of negative conformal invariant. Ann. Global Anal. Geom. 53 (2018), 121150.CrossRefGoogle Scholar
Chen, X., Ruan, Y. and Sun, L.. The Han-Li conjecture in constant scalar curvature and constant boundary mean curvature problem on compact manifolds. Adv. Math. 358 (2019), 56.CrossRefGoogle Scholar
Cherrier, P.. Problemes de Neumann non lineaires sur les varietés riemanniennes. J. Funct. Anal. 57 (1984), 154206.CrossRefGoogle Scholar
Chipot, M., Fila, M. and Shafrir, I.. On the solutions to some elliptic equations with nonlinear Neumann boundary conditions. Adv. Diff. Eqs. 1 (1996), 91110.Google Scholar
Cruz-Blázquez, S., Malchiodi, A. and Ruiz, D.. Conformal metrics with prescribed scalar and mean curvature. Reine Angew. Math. 789 (2022), 211251.CrossRefGoogle Scholar
Cruz-Blázquez, S. and Ruiz, D.. Prescribing Gaussian and geodesic curvatures on disks. Adv. Nonlinear Stud. 18 (2018), 453468.CrossRefGoogle Scholar
Cruz-Blázquez, S., Pistoia, A. and Vaira, G., Clustering phenomena in low dimensions for a boundary Yamabe problem, https://arxiv.org/abs/2211.08219.Google Scholar
Djadli, Z., Malchiodi, A. and Ahmedou, M. O.. Prescribing Scalar and Boundary Mean Curvature on the Three Dimensional Half Sphere. J. Geom. Anal. 13 (2003), 255289.CrossRefGoogle Scholar
Da Lio, F., Martinazzi, L. and Riviére, T.. Blow-Up Analysis of a Nonlocal Liouville-Type Equation. Analysis PDE 8 (2015), 17571805.CrossRefGoogle Scholar
Djadli, Z., Malchiodi, A. and Ahmedou, M. O.. The prescribed boundary mean curvature problem on $B^4$. J. Diff. Eqs 206 (2004), 373398.CrossRefGoogle Scholar
Escobar, J.. Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann. Math. 136 (1992), 150.CrossRefGoogle Scholar
Escobar, J.. Conformal metrics with prescribed mean curvature on the boundary. Calc. Var. 4 (1996), 559592.CrossRefGoogle Scholar
Escobar, J.. The Yamabe problem on manifolds with boundary. J. Differ. Geom. 35 (1992), 2184.CrossRefGoogle Scholar
Escobar, J. and García, G.. Conformal metrics on the ball with zero scalar curvature and prescribed mean curvature on the boundary. J. Funct. Anal. 211 (2004), 71152.CrossRefGoogle Scholar
Gálvez, J. A. and Mira, P.. The Liouville equation in the half-plane. J. Differ. Equ. 246 (2009), 41734187.CrossRefGoogle Scholar
Grossi, M. and Prashanth, S.. Local solutions for elliptic problems with exponential nonlinearities via finite dimensional reduction. Indiana Univ. Math. J. 54 (2005), 383415.CrossRefGoogle Scholar
Guo, Y. X. and Liu, J.. Blow-up analysis for solutions of the Laplacian equation with exponential Neumann boundary condition in dimension two. Commun. Contemp. Math. 8 (2006), 737761.CrossRefGoogle Scholar
Han, Z. C. and Li, Y. Y.. The existence of conformal metrics with constant scalar curvature and constant boundary mean curvature. Comm. Anal. Geom. 8 (2000), 809869.CrossRefGoogle Scholar
Han, Z. C. and Li, Y. Y.. The Yamabe problem on manifolds with boundaries: existence and compactness results. Duke Math. J. 99 (1999), 489542.CrossRefGoogle Scholar
Jevnikar, A., López-Soriano, R., Medina, M. and Ruiz, D.. Blow-up analysis of conformal metrics of the disk with prescribed Gaussian and geodesic curvatures. Anal. PDE 15 (2022), 18971931.CrossRefGoogle Scholar
Jiménez, A.. The Liouville equation in an annulus. Nonlinear Anal. 75 (2012), 20902097.CrossRefGoogle Scholar
Kazdan, F.W.Warner J. L.. Curvature functions for compact 2-manifolds. Ann. Math. 99 (1974), 1447.CrossRefGoogle Scholar
Li, Y. Y.. Prescribing scalar curvature on $S^n$ and related problems. II. Existence and compactness. Comm. Pure Appl. Math. 49 (1996), 541597.3.0.CO;2-A>CrossRefGoogle Scholar
Li, Y. and Liu, P.. A Moser-Trudinger inequality on the boundary of a compact Riemann surface. Math. Z. 250 (2005), 363386.CrossRefGoogle Scholar
Li, Y. Y. and Zhu, M.. Uniqueness theorems through the method of moving spheres. Duke Math. J. 80 (1995), 383417.CrossRefGoogle Scholar
Liu, P. and Huang, W.. On prescribing geodesic curvature on D2. Nonlinear Analysis 60 (2005), 465473.Google Scholar
López-Soriano, R., Malchiodi, A. and Ruiz, D.. Conformal metrics with prescribed Gaussian and geodesic curvatures. Ann. Sci. Éc. Norm. Supér. (4) 55 (2022), 12891328.CrossRefGoogle Scholar
Marques, F. C.. Conformal deformations to scalar-flat metrics with constant mean curvature on the boundary. Comm. Anal. Geom. 15 (2007), 381405.CrossRefGoogle Scholar
Marques, F. C.. Existence results for the Yamabe problem on manifolds with boundary. Indiana Univ. Math. J. (), –.Google Scholar
Mayer, M. and Ndiaye, C. B.. Barycenter technique and the Riemann mapping problem of Cherrier-Escobar. J. Differ. Geom. 107 (2017), 519560.CrossRefGoogle Scholar
Ruiz, D..Conformal metrics of the disk with prescribed Gaussian and geodesic curvatures, https://arxiv.org/abs/2108.12815.Google Scholar
Xu, X. and Zhang, H.. Conformal metrics on the unit ball with prescribed mean curvature. Math. Ann. 365 (2016), 497557.CrossRefGoogle Scholar
Zhang, L.. Classification of conformal metrics on $\mathbb {R}^2_+$ with constant Gauss curvature and geodesic curvature on the boundary under various integral finiteness assumptions. Calc. Var. Partial Differ. Equ. 16 (2003), 405430.CrossRefGoogle Scholar