Hostname: page-component-68c7f8b79f-fc4h8 Total loading time: 0 Render date: 2025-12-19T17:40:13.940Z Has data issue: false hasContentIssue false

Normalized solutions of L2-supercritical NLS equations on non-compact metric graphs

Published online by Cambridge University Press:  11 December 2025

Simone Dovetta
Affiliation:
Politecnico di Torino, Dipartimento di Scienze Matematiche “G.L. Lagrange”, Corso Duca degli Abruzzi, 24, Torino, Italy (simone.dovetta@polito.it)
Louis Jeanjean
Affiliation:
Université Marie et Louis Pasteur, Centre national de la recherche scientifique, Laboratoire de Mathématiques (UMR 6623), Besançon, France (louis.jeanjean@univ-fcomte.fr)
Enrico Serra*
Affiliation:
Politecnico di Torino, Dipartimento di Scienze Matematiche “G.L. Lagrange”, Corso Duca degli Abruzzi, 24, Torino, Italy (enrico.serra@polito.it)
*
*Corresponding author.

Abstract

We consider the existence of normalized solutions to non-linear Schrödinger equations on non-compact metric graphs in the L2-supercritical regime. For sufficiently small prescribed mass (L2 norm), we prove existence of positive solutions on two classes of graphs: periodic graphs and non-compact graphs with finitely many edges and suitable topological assumptions. Our approach is based on mountain pass techniques. A key point to overcome the serious lack of compactness is to show that all solutions with small mass have positive energy. To complement our analysis, we prove that this is no longer true, in general, for large masses. To the best of our knowledge, these are the first results with an L2-supercritical non-linearity extended on the whole graph and unravelling the role of topology in the existence of solutions.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adami, R., Cacciapuoti, C., Finco, D. and Noja, D.. Stationary states of NLS on star graphs. Europhysics Letters 100 (2012), 10003.CrossRefGoogle Scholar
Adami, R., Dovetta, S., Serra, E. and Tilli, P.. Dimensional crossover with a continuum of critical exponents for NLS on doubly periodic metric graphs. Anal. PDE 12 (2019), 15971612.CrossRefGoogle Scholar
Adami, R., Serra, E. and Tilli, P.. NLS ground states on graphs. Calc. Var. PDE 54 (2015), 743761.CrossRefGoogle Scholar
Adami, R., Serra, E. and Tilli, P.. Threshold phenomena and existence results for NLS ground states on graphs. J. Funct. An. 271 (2016), 201223.CrossRefGoogle Scholar
Adami, R., Serra, E. and Tilli, P.. Negative energy ground states for the L 2-critical NLSE on metric graphs. Comm. Math. Phys. 352 (2017), 387406.CrossRefGoogle Scholar
Adami, R., Serra, E. and Tilli, P.. Nonlinear dynamics on branched structures and networks. Riv. Mat. Univ. Parma 8 (2017), 109159.Google Scholar
Agostinho, F., Correia, S. and Tavares, H.. Classification and stability of positive solutions to the NLS equation on the $\mathcal{T}$-metric graph. Nonlinearity 37 (2024), 025005.CrossRefGoogle Scholar
Berkolaiko, G. and Kuchment, P.. Introduction to quantum graphs, Mathematical Surveys and Monographs, Vol. 186 (American Mathematical Society, Providence, RI, 2013).Google Scholar
Berkolaiko, G., Marzuola, J. L. and Pelinovsky, D. E.. Edge-localized states on quantum graphs in the limit of large mass. Ann. Inst. H. Poincaré (C) An. Non Lin. 38 (2021), 12951335.Google Scholar
Besse, C., Duboscq, R. and Le Coz, S.. Gradient flow approach to the calculation of ground states on nonlinear quantum graphs. Ann. H. Lebesgue 5 (2022), 387428.CrossRefGoogle Scholar
Besse, C., Duboscq, R. and Le Coz, S.. Numerical simulations on nonlinear quantum graphs with the GraFiDi library. SMAI J. Comp. Math. 8 (2022), 147.CrossRefGoogle Scholar
Boni, F., Dovetta, S. and Serra, E.. Normalized ground states for Schrödinger equations on metric graphs with nonlinear point defects. J. Funct. Anal. 288 (2025), 110760.CrossRefGoogle Scholar
Borthwick, J., Chang, X., Jeanjean, L. and Soave, N.. Normalized solutions of L 2-supercritical NLS equations on noncompact metric graphs with localized nonlinearities. Nonlinearity 36 (2023), 37763795.CrossRefGoogle Scholar
Borthwick, J., Chang, X., Jeanjean, L. and Soave, N.. Bounded Palais-Smale sequences with Morse type information for some constrained functionals. Trans. Amer. Math. Soc. 377, 44814517. https://doi.org/10.1090/tran/9145Google Scholar
Brezis, H. and Lieb, E.. A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88 (1983), 486490.CrossRefGoogle Scholar
Carrillo, P., Galant, D., Jeanjean, L. and Troestler, C.. Infinitely many normalized solutions of L 2-supercritical NLS equations on noncompact metric graphs with localized nonlinearities. (2024), arXiv:2403.10959 [math.AP].Google Scholar
Chang, X., Jeanjean, L. and Soave, N.. Normalized solutions of L 2-supercritical NLS equations on compact metric graphs. Ann. Inst. H. Poincaré (C) An. Non Lin. 41 (2023), 933959 10.4171/AIHPC/88.CrossRefGoogle Scholar
Chen, H., Dovetta, S., Pistoia, A. and Serra, E.. Existence and multiplicity of peaked bound states for nonlinear Schrödinger equations on metric graphs. Nonlinearity 37 (2024), 075022.CrossRefGoogle Scholar
Coron, J. M.. The continuity of the rearrangement in $W^{1,p}(\mathbb{R})$. Ann. Sc. Normale Sup. Pisa 11 (1984), 5785.Google Scholar
Coti Zelati, V. and Rabinowitz, P. H.. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4 (1991), 693727.CrossRefGoogle Scholar
De Coster, C., Dovetta, S., Galant, D. and Serra, E.. On the notion of ground state for nonlinear Schrödinger equations on metric graphs. Calc. Var. PDE 62 (2023), 159.CrossRefGoogle Scholar
De Coster, C., Dovetta, S., Galant, D., Serra, E. and Troestler, C.. Constant sign and sign changing NLS ground states on noncompact metric graphs. (2023), arXiv:2306.12121 [math.AP].Google Scholar
Dovetta, S.. Mass-constrained ground states of the stationary NLSE on periodic metric graphs. NoDEA 26 30 (2019).CrossRefGoogle Scholar
Dovetta, S., Serra, E. and Tilli, P.. Action versus energy ground states in nonlinear Schrödinger equations. Math. Ann. 385 (2023), 15451576.CrossRefGoogle Scholar
Dovetta, S. and Tentarelli, L.. Symmetry breaking in two-dimensional square grids: Persistence and failure of the dimensional crossover. J. Math. Pures Appl. 160 (2022), 99157.CrossRefGoogle Scholar
Galant, D.. Private communication.Google Scholar
Jeanjean, L.. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R}^{N}$. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 787809.CrossRefGoogle Scholar
Kairzhan, A., Marangell, R., Pelinovsky, D. E. and Xiao, K.. Existence of standing waves on a flower graph. J. Diff. Eq. 271 (2021), 719763.CrossRefGoogle Scholar
Kairzhan, A., Noja, D. and Pelinovsky, D. E.. Standing waves on quantum graphs. J. Phys. A 55 (2022), 243001.CrossRefGoogle Scholar
Molle, R., Riey, G. and Verzini, G.. Normalized solutions to mass supercritical Schrödinger equations with negative potential. J. Diff. Eq. 333 (2022), 302331.CrossRefGoogle Scholar
Noja, D. and Pelinovsky, D. E.. Standing waves of the quintic NLS equation on the tadpole graph. Calc. Var. PDE 59 173 (2020).CrossRefGoogle Scholar
Pankov, A.. Nonlinear Schrödinger equations on periodic metric graphs. Discrete Contin. Dyn. Syst. 38 (2018), 697714.CrossRefGoogle Scholar
Pierotti, D. and Soave, N.. Ground states for the NLS equation with combined nonlinearities on non-compact metric graphs. SIAM J. Math. Anal. 54 (2022), 768790.CrossRefGoogle Scholar
Pierotti, D., Soave, N. and Verzini, G.. Local minimizers in absence of ground states for the critical NLS energy on metric graphs. Proc. Royal Soc. Edinb. Section A: Math. 151 (2021), 705733.CrossRefGoogle Scholar