Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:30:12.078Z Has data issue: false hasContentIssue false

Invariant Gibbs dynamics for the dynamical sine-Gordon model

Published online by Cambridge University Press:  16 September 2020

Tadahiro Oh
Affiliation:
School of Mathematics, The University of Edinburgh, and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, EdinburghEH9 3FD, UK (hiro.oh@ed.ac.uk)
Tristan Robert
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33501Bielefeld, Germany University of Rennes, CNRS, IRMAR - UMR 6625, F-35000, Rennes, France (tristan.robert@ens-rennes.fr)
Philippe Sosoe
Affiliation:
Department of Mathematics, Cornell University, 584 Malott Hall, Ithaca, New York14853, USA (psosoe@math.cornell.edu)
Yuzhao Wang
Affiliation:
School of Mathematics, University of Birmingham, Watson Building, Edgbaston BirminghamB15 2TT, United Kingdom (y.wang.14@bham.ac.uk)

Abstract

In this note, we study the hyperbolic stochastic damped sine-Gordon equation (SdSG), with a parameter β2 > 0, and its associated Gibbs dynamics on the two-dimensional torus. After introducing a suitable renormalization, we first construct the Gibbs measure in the range 0 < β2 < 4π via the variational approach due to Barashkov-Gubinelli (2018). We then prove almost sure global well-posedness and invariance of the Gibbs measure under the hyperbolic SdSG dynamics in the range 0 < β2 < 2π. Our construction of the Gibbs measure also yields almost sure global well-posedness and invariance of the Gibbs measure for the parabolic sine-Gordon model in the range 0 < β2 < 4π.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barashkov, N. and Gubinelli, M.. Variational approach to Euclidean QFT. arXiv:1805.10814 [math.PR].Google Scholar
Barone, A., Esposito, F., Magee, C. and Scott, A.. Theory and applications of the sine-Gordon equation. Rivista del Nuovo Cimento 1 (1971), 227267.CrossRefGoogle Scholar
Bényi, Á., Oh, T. and Pocovnicu, O.. On the probabilistic Cauchy theory for nonlinear dispersive PDEs. In Landscapes of time-frequency analysis. Applied and Numerical Harmonic Analysis, pp. 132 (Cham: Birkhäuser/Springer, 2019).Google Scholar
Bourgain, J.. Periodic nonlinear Schrödinger equation and invariant measures. Comm. Math. Phys. 166 (1994), 126.CrossRefGoogle Scholar
Bourgain, J.. Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Comm. Math. Phys. 176 (1996), 421445.CrossRefGoogle Scholar
Chandra, A., Hairer, M. and Shen, H.. The dynamical sine-Gordon model in the full subcritical regime. arXiv:1808.02594 [math.PR].Google Scholar
Da Prato, G. and Debussche, A.. Strong solutions to the stochastic quantization equations. Ann. Probab. 31 (2003), 19001916.CrossRefGoogle Scholar
Da Prato, G. and Zabczyk, J.. Stochastic equations in infinite dimensions. In Encyclopedia of mathematics and its applications, vol. 152, 2nd edn (Cambridge: Cambridge University Press, 2014), xviii+493pp.Google Scholar
Friedlander, L.. An invariant measure for the equation u ttu xx + u 3 = 0. Comm. Math. Phys. 98 (1985), 116.CrossRefGoogle Scholar
Fröhlich, J.. Classical, quantum statistical mechanics in one and two dimensions, two-component Yukawa- and Coulomb systems. Comm. Math. Phys. 47 (1976), 233268.CrossRefGoogle Scholar
Garban, C.. Dynamical Liouville. J. Funct. Anal. 278 (2020), 108351.CrossRefGoogle Scholar
Gatto, A. E.. Product rule and chain rule estimates for fractional derivatives on spaces that satisfy the doubling condition. J. Funct. Anal. 188 (2002), 2737.CrossRefGoogle Scholar
Ginibre, J. and Velo, G.. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133 (1995), 5068.CrossRefGoogle Scholar
Gubinelli, M., Imkeller, P. and Perkowski, N.. Paracontrolled distributions and singular PDEs. Forum Math. Pi 3 (2015), e6, 75pp.CrossRefGoogle Scholar
Gubinelli, M., Koch, H. and Oh, T.. Renormalization of the two-dimensional stochastic nonlinear wave equation. Trans. Am. Math. Soc. 370 (2018), 73357359.CrossRefGoogle Scholar
Gubinelli, M., Koch, H. and Oh, T.. Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity. arXiv:1811.07808 [math.AP].Google Scholar
Gubinelli, M., Koch, H., Oh, T. and Tolomeo, L.. Global dynamics for the two-dimensional stochastic nonlinear wave equations. arXiv:2005.10570 [math.AP]Google Scholar
Gunaratnam, T. S., Oh, T., Tzvetkov, N. and Weber, H.. Quasi-invariant Gaussian measures for the nonlinear wave equation in three dimensions. arXiv:1808.03158 [math.PR].Google Scholar
Hairer, M.. A theory of regularity structures. Invent. Math. 198 (2014), 269504.CrossRefGoogle Scholar
Hoshino, M., Kawabi, H. and Kusuoka, S.. Stochastic quantization associated with the exp (Φ)2-quantum field model driven by space-time white noise on the torus. J. Evol. Equ. (2020). https://doi.org/10.1007/s00028-020-00583-0.Google Scholar
Hairer, M. and Shen, H.. The dynamical sine-Gordon model. Comm. Math. Phys. 341 (2016), 933989.CrossRefGoogle Scholar
Keel, M. and Tao, T.. Endpoint Strichartz estimates. Am. J. Math. 120 (1998), 955980.CrossRefGoogle Scholar
Killip, R., Stovall, B. and Visan, M.. Blowup behaviour for the nonlinear Klein-Gordon equation. Math. Ann. 358 (2014), 289350.CrossRefGoogle Scholar
Lacoin, H., Rhodes, R. and Vargas, V.. Complex Gaussian multiplicative chaos. Comm. Math. Phys. 337 (2015), 569632.CrossRefGoogle Scholar
Lacoin, H., Rhodes, R. and Vargas, V.. A probabilistic approach of ultraviolet renormalisation in the boundary Sine-Gordon model. arXiv:1903.01394 [math.PR].Google Scholar
McKean, H. P.. The sine-Gordon and sinh-Gordon equations on the circle. Comm. Pure Appl. Math. 34 (1981), 197257.CrossRefGoogle Scholar
McKean, H. P. and Vaninsky, K. L.. Statistical mechanics of nonlinear wave equations. In Trends and perspectives in applied mathematics, Appl. Math. Sci., vol. 100, pp. 239264 (New York: Springer, 1994).CrossRefGoogle Scholar
Oh, T.. White noise for KdV and mKdV on the circle. In Harmonic analysis and nonlinear partial differential equations, RIMS Kôkyûroku Bessatsu, vol. B18, 99124 (Kyoto: Res. Inst. Math. Sci. (RIMS), 2010).Google Scholar
Oh, T. and Okamoto, M.. Comparing the stochastic nonlinear wave and heat equations: a case study. arXiv:1908.03490 [math.AP].Google Scholar
Oh, T., Okamoto, M. and Robert, T.. A remark on triviality for the two-dimensional stochastic nonlinear wave equation. Stochastic Process. Appl 130 (2020), 58385864.CrossRefGoogle Scholar
Oh, T., Okamoto, M. and Tzvetkov, N.. Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation, preprint.Google Scholar
Oh, T., Robert, T., Sosoe, P. and Wang, Y.. On the two-dimensional hyperbolic stochastic sine-Gordon equation. Stoch. Partial Differ. Equ. Anal. Comput. (2020), 32p. https://doi.org/10.1007/s40072-020-00165-8.Google Scholar
Oh, T., Robert, T. and Tzvetkov, N.. Stochastic nonlinear wave dynamics on compact surfaces. arXiv:1904.05277 [math.AP].Google Scholar
Oh, T., Robert, T. and Wang, Y.. On the parabolic and hyperbolic Liouville equations. arXiv:1908.03944 [math.AP].Google Scholar
Oh, T. and Thomann, L.. A pedestrian approach to the invariant Gibbs measure for the 2-d defocusing nonlinear Schrödinger equations. Stoch. Partial Differ. Equ. Anal. Comput. 6 (2018), 397445.Google ScholarPubMed
Perring, J. and Skyrme, T.. A model unified field equation. Nuclear Phys. 31 (1962), 550555.CrossRefGoogle Scholar
Revuz, D. and Yor, M.. Continuous martingales and Brownian motion. In Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol. 293, 3rd edn (Berlin: Springer-Verlag, 1999), xiv+602pp.Google Scholar
Ryang, S., Saito, T. and Shigemoto, K.. Canonical stochastic quantization. Progr. Theor. Phys. 73 (1985), 12951298.CrossRefGoogle Scholar
Tolomeo, L.. Global well-posedness of the two-dimensional stochastic nonlinear wave equation on an unbounded domain. arXiv:1912.08667 [math.AP].Google Scholar
Tzvetkov, N.. Invariant measures for the defocusing nonlinear Schrödinger equation. Ann. Inst. Fourier (Grenoble) 58 (2008), 25432604.CrossRefGoogle Scholar