Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-20T02:02:23.266Z Has data issue: false hasContentIssue false

Global existence and some qualitative properties of weak solutions for a class of pseudo-parabolic equations with a logarithmic nonlinearity in whole $\mathbb{R}^{N}$

Published online by Cambridge University Press:  01 August 2025

Claudianor Alves
Affiliation:
Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, Campina Grande, Paraíba 58429-970, Brazil (coalves@mat.ufcg.edu.br)
Tahir Boudjeriou*
Affiliation:
Department of Basic Teaching, Institute of Electrical & Electronic Engineering, University of Boumerdes, Boumerdes 35000, Algeria (t.boudjeriou@univ-boumerdes.dz) (corresponding author)
*
*Corresponding author.

Abstract

In this paper, we study the Cauchy problem for pseudo-parabolic equations with a logarithmic nonlinearity. After establishing the existence and uniqueness of weak solutions within a suitable functional framework, we investigate several qualitative properties, including the asymptotic behaviour and blow-up of solutions as $t\to +\infty$. Moreover, when the initial data are close to a Gaussian function, we prove that these weak solutions exhibit either super-exponential growth or super-exponential decay.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alfaro, M. and Carles, R.. Superexponential growth or decay in the heat equation with a logarithmic nonlinearity. Dynamics of Partial Differential Equations. 14 (2017), 343358.10.4310/DPDE.2017.v14.n4.a2CrossRefGoogle Scholar
Alves, C. O. and Boudjeriou, T.. Existence of solution for a class of nonlocal problem via dynamical methods. Rend. Circ. Mat. Palermo. 71 (2022), .10.1007/s12215-021-00644-4CrossRefGoogle Scholar
Ardila, A. H.. Orbital stability of Gausson solutions to logarithmic Schrödinger equations. Electron. J. Differential Equations. 335 (2016), 9.Google Scholar
Bialynicki-Birula, I. and Mycielski, J.. Nonlinear wave mechanics. Ann. Phys. 100 (1976), 6293.10.1016/0003-4916(76)90057-9CrossRefGoogle Scholar
Boudjeriou, T. and Alves, C. O.. Global existence and some qualitative properties of weak solutions for a class of heat equations with a logarithmic nonlinearity in whole $\mathbb{R}^{N}$. J. Dyn. Diff. Equat. (2024).10.1007/s10884-024-10385-4CrossRefGoogle Scholar
Boudjeriou, T.. A note on a supercritical p-Laplacian equation with logarithmic perturbation. Applied Mathematics Letters. (2024).10.1016/j.aml.2024.109120CrossRefGoogle Scholar
Cao, Y., Yin, J. X. and Wang, C. P.. Cauchy problems of semilinear pseudo-parabolic equations. J. Differential Equations. 246 (2009), 45684590.CrossRefGoogle Scholar
Carles, R.. Logarithmic Schrödinger equation and isothermal fluids. EMS Surv. Math. Sci. 9 (2022), 99134.10.4171/emss/54CrossRefGoogle Scholar
Carles, R. and Ferriere, G.. Logarithmic Schrödinger equation with quadratic potential. Nonlinearity. 34 (2021), 82838310.10.1088/1361-6544/ac3144CrossRefGoogle Scholar
Carles, R. and Gallagher, I.. Universal dynamics for the defocusing logarithmic Schrödinger equation. Duke Math. J. 167 (2018), 17611801.CrossRefGoogle Scholar
Cazenave, T.. Stable solutions of the logarithmic Schrödinger equation. Nonlinear. Anal. T.M.A. 7 (1983), 11271140.CrossRefGoogle Scholar
Cazenave, T.. Semilinear SchröDinger Equations (Courant Lecture Notes in Mathematics). Vol. 10 (American Mathematical Society, Courant Institute of Mathematical Sciences, 2003).Google Scholar
Cazenave, T. and Haraux, A.. Equations d’evolution avec non-linéarité logarithmique. Ann. Fac. Sci. Toulouse Math. 2 (1980), 2151.10.5802/afst.543CrossRefGoogle Scholar
Chen, H., Luo, P. and Liu, G.. Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity. Journal of Mathematical Analysis and Applications. 422 (2015), 8498.10.1016/j.jmaa.2014.08.030CrossRefGoogle Scholar
Chen, H. and Tian, S.. Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. J. Differential Equations. 285 (2015), 44244442.CrossRefGoogle Scholar
Furioli, G., Kawakami, T., Ruf, B. and Terraneo, E.. Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity. J. Differential Equations. 262 (2017), 145180.CrossRefGoogle Scholar
Giusti, E.. Direct Methods in the Calculus of variations. (World Scientific Publishing Co. Inc, River Edge, NJ, 2003).10.1142/5002CrossRefGoogle Scholar
Guerrero, P., López, J. L. and Nieto, J.. Global H 1 solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal. Real World Appl. 11 (2010), 7987.10.1016/j.nonrwa.2008.10.017CrossRefGoogle Scholar
Han, Y.. Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity. Journal of Mathematical Analysis and Applications. 474 (2019), 513517.CrossRefGoogle Scholar
Hayashi, M. and Ozawa, T.. The Cauchy problem for the logarithmic Schrödinger equation revisited. Ann. Henri Poincaré (2024).Google Scholar
Henry, D.. Geometric Theory of Semilinear Parabolic Equations (Lecture Notes in Math.). Vol. 840 (Springer-Verlag, New York, 1981).10.1007/BFb0089647CrossRefGoogle Scholar
Ji, S., Yin, J. and Cao, Y.. Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity. J. Differential Equations. 261 (2016), 54465464.10.1016/j.jde.2016.08.017CrossRefGoogle Scholar
Karch, G.. Asymptotic behaviour of solutions to some pesudoparabolic equations. Math. Methods Appl. Sci. 20 (1997), 271289.3.0.CO;2-F>CrossRefGoogle Scholar
Khomrutai, S.. Global well-posedness and grow-up rate of solutions for a sublinear pseudoparabolic equation. J. Differential Equations. 260 (2015), 35983657.10.1016/j.jde.2015.10.043CrossRefGoogle Scholar
Li, Z. P. and Du, W. J.. Cauchy problems of pseudo-parabolic equations with inhomogeneous terms. Z. Angew. Math. Phys. 66 (2015), 31813203.10.1007/s00033-015-0558-2CrossRefGoogle Scholar
Lieb, E. H. and Loss, M.. Analysis (Graduate Studies in Mathematics). 2nd edition, Vol. 14 (American Mathematical Society, Providence, RI, 2001).Google Scholar
Meyer, J. C.. Theoretical aspects of the Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations. PhD Thesis University of Birmingham, 2013.Google Scholar
Qin, Y.. Analytic Inequalities and their Applications in PDEs. Operator Theory: Advances and Applications, Vol. 241 (Cham, Switzerland: Springer Science & Business Media, 2016).Google Scholar
Rao, V. R. G. and Ting, T. W.. Solutions of pseudo-heat equations in the whole space. Arch. Ration. Mech. Anal. 49 (1972), 5778.Google Scholar
Rao, V. R. G. and Ting, T. W.. Pointwise solutions of pseudoparabolic equations in whole space. J. Differential Equations. 23 (1977), 125161.10.1016/0022-0396(77)90138-3CrossRefGoogle Scholar
Showalter, R. E. and Ting, T. W.. Pseudoparabolic partial differential equations. SIAM J. Math. Anal. 1 (1970), 126.10.1137/0501001CrossRefGoogle Scholar
Ting, T. W.. Certain non-steady flows of second-order fluids, Arch. Ration. Mech. Anal. 14 (1963), 126.10.1007/BF00250690CrossRefGoogle Scholar
Ting, T. W.. Parabolic and pseudo-parabolic partial differential equations. J. Math. Soc. Japan. 21 (1969), 440453.Google Scholar
Xu, R. Z. and Su, J.. Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct.Anal. 264 (2013), 27322763.10.1016/j.jfa.2013.03.010CrossRefGoogle Scholar
Zheng, S.. Nonlinear Evolution equations (Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics). Vol. 133 (Chapman & Hall/CRC, Boca Raton, FL, 2004).Google Scholar
Zloshchastiev, K. G.. Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences. Grav. Cosmol. 16 (2010), 288297.10.1134/S0202289310040067CrossRefGoogle Scholar