Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T22:46:11.098Z Has data issue: false hasContentIssue false

Dyadic Fefferman–Stein inequalities and the equivalence of Haar bases on weighted Lebesgue spaces

Published online by Cambridge University Press:  11 February 2011

Hugo Aimar
Affiliation:
Departamento de Matemática (FIQ-UNL), Santiago del Estero 2829 (3000) Santa Fe, Argentina and IMAL-CONICET, Güemes 3450 (3000) Santa Fe, Argentina (haimar@santafe-conicet.gov.ar; bernard@santafe-conicet.gov.ar)
Ana Bernardis
Affiliation:
Departamento de Matemática (FIQ-UNL), Santiago del Estero 2829 (3000) Santa Fe, Argentina and IMAL-CONICET, Güemes 3450 (3000) Santa Fe, Argentina (haimar@santafe-conicet.gov.ar; bernard@santafe-conicet.gov.ar)
Luis Nowak
Affiliation:
Departamento de Matemática (FaEA-UNComa), Buenos Aires 1400 (8300), Neuquén, Argentina and IMAL-CONICET, Güemes 3450 (3000) Santa Fe, Argentina (luisenlitoral@yahoo.com.ar)

Abstract

We give sufficient conditions on two dyadic systems to obtain the equivalence of corresponding Haar systems on dyadic weighted Lebesgue spaces on spaces of homogeneous type. In order to obtain these results, we prove a Fefferman–Stein weighted inequality for vector-valued dyadic Hardy–Littlewood maximal operators with dyadic weights in this general setting.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)