Published online by Cambridge University Press: 14 November 2011
The exterior Dirichlet problem for the Helmholtz equation in two dimensions is reduced to a boundary integral equation which is soluble by iteration. A standard application of Green's theorem leads to boundary integral equations which are not uniquely soluble because the operator has an eigenvalue. The present approach modifies the operator in such a way that the former eigenvalue is in the resolvent spectrum for low frequencies. The results are applied to the inverse scattering problem wherein the far field is known for a limited frequency range and one seeks the curve on which a plane wave is incident and a Dirichlet boundary condition is assumed. The first iterate in the solution of the boundary integral equation is used to obtain a sequence of moment problems relating the Fourier coefficients of the far field to the coefficients of the Laurent expansion of the conformai transformation which maps the exterior of a circle onto the exterior of the unknown curve. These moment problems are soluble in terms of the mapping radius which in turn may be determined from scattered far field data for an incident plane wave from a second direction.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.