Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T09:11:05.850Z Has data issue: false hasContentIssue false

Asymptotics of steady states of a selection–mutation equation for small mutation rate

Published online by Cambridge University Press:  03 December 2013

Àngel Calsina
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain (acalsina@mat.uab.cat; silvia@mat.uab.cat)
Sílvia Cuadrado
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain (acalsina@mat.uab.cat; silvia@mat.uab.cat)
Laurent Desvillettes
Affiliation:
CMLA, ENS Cachan, IUF and CNRS, PRES UniverSud, 61 Avenue du President Wilson, 94235 Cachan Cedex, France (desville@cmla.ens-cachan.fr)
Gaël Raoul
Affiliation:
Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France (raoul@cefe.cnrs.fr)

Abstract

We consider a selection–mutation equation for the density of individuals with respect to a continuous phenotypic evolutionary trait. We assume that the competition term for an individual with a given trait depends on the traits of all the other individuals, therefore giving an infinite-dimensional nonlinearity. Mutations are modelled by means of an integral operator. We prove existence of steady states and show that, when the mutation rate goes to zero, the asymptotic profile of the population is a Cauchy distribution.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)