Published online by Cambridge University Press: 01 November 1998
Let ${\cal M} =\langle M,<,\ldots\rangle$ be alinearly ordered structure. We define ${\cal M}$ to be{\em o-minimal} if every definable subset of $M$ is a finite union of intervals. Classical examples are ordered divisible abelian groups and real closed fields. We prove a trichotomy theorem for the structure that an arbitraryo-minimal ${\cal M}$ can induce on a neighbourhood of any $a$in $M$. Roughly said, one of the following holds: \begin{enumerate}\item[(i)] $a$ is trivial (technical term), {\em or}\item[(ii)] $a$ has a convex neighbourhood on which ${\cal M}$ induces the structure of an ordered vector space, {\em or}\item[(iii)] $a$ is contained in an open interval on which ${\cal M}$ induces the structure of an expansion of a real closed field. \end{enumerate} The proof uses ‘geometric calculus’ which allows one to recover a differentiable structure by purely geometric methods.
1991 Mathematics Subject Classification: primary 03C45; secondary 03C52, 12J15, 14P10.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.