No CrossRef data available.
Published online by Cambridge University Press: 20 August 2001
In this paper we study the eigenvalues and eigenfunctions of metric measure manifolds. We prove that any eigenfunction is $C^{1,\alpha}$ at its critical points and $C^{\infty}$ elsewhere. Moreover, the eigenfunction corresponding to the first eigenvalue in the Dirichlet problem does not change sign. We also discuss the first eigenvalue, the Sobolev constants and their relationship with the isoperimetric constants. 2000 Mathematics Subject Classification: 47J05, 47J10, 53C60, 58E05, 58C40.