Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T10:46:59.206Z Has data issue: false hasContentIssue false

A STEP BEYOND KNESER'S THEOREM FOR ABELIAN FINITE GROUPS

Published online by Cambridge University Press:  28 January 2003

JEAN-MARC DESHOUILLERS
Affiliation:
Statistique Mathématique et Applications, EA 2961, Université Victor Segalen Bordeaux 2, 33076 Bordeaux Cedex, France and A2X, UMR 5465 CNRS et Université Bordeaux 1. jean-marc.deshouillers@math.u-bordeaux.fr
GREGORY A. FREIMAN
Affiliation:
Usha 11, Ramat Aviv, Tel Aviv, Israel and IHÉS, Paris. grisha@math.tau.ac.il
Get access

Abstract

A precise description of a subset $\mathcal{A}$ of $\mathbb{Z} / n \mathbb{Z}$ satisfying

$$ | \mathcal{A} + \mathcal{A} | \leq 2.04 | \mathcal{A} | $$

is given. Basically, there exists a subgroup $\mathcal{H}$ of $\mathbb{Z} / n \mathbb{Z}$ such that $\mathcal{A}$ is included in an arithmetic progression of $\ell$ cosets modulo $\mathcal{H}$ and

$$(\ell - 1) | \mathcal{H} | \leq | \mathcal{A} + \mathcal{A} | - | \mathcal{A} |.$$

2000 Mathematical Subject Classification: 11B50, 11B83, 20E34.

Type
Research Article
Copyright
2003 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)