Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T17:56:23.784Z Has data issue: false hasContentIssue false

X-ray polarimetry – A new Window on Black Hole Systems

Published online by Cambridge University Press:  23 June 2017

René W. Goosmann*
Affiliation:
Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France email: rene.goosmann@astro.unistra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three dedicated X-ray polarimetry mission projects are currently under phase A study at NASA and ESA. The need for this new observational window is more apparent than ever. On behalf of the consortium behind the X-ray Imaging Polarimetry Explorer (XIPE) we present here some prospects of X-ray polarimetry for our understanding of supermassive and stellar mass black hole systems. X-ray polarimetry is going to discriminate between leptonic and hadronic jet models in radio-loud active galactic nuclei. For leptonic jets it also puts important constraints on the origin of the seed photons that constitute the high energy emission via Comptonization. Another important application of X-ray polarimetry allows us to clarify the accretion history of the supermassive black hole at the Galactic Center. In a few Black Hole X-ray binary systems, X-ray polarimetry allows us to estimate in a new, independent way the angular momentum of the black hole.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abramowicz, M. A. & Kluźniak, W. 2001, A&A, 374, L19 Google Scholar
Bellazzini, R., Baldini, L., Brez, A., et al. 2003, Nuclear Instruments and Methods in Physics Research A, 510, 176 Google Scholar
Churazov, E., Sunyaev, R., & Sazonov, S. 2002, MNRAS, 330, 817 CrossRefGoogle Scholar
Connors, P. A., Stark, R. F., & Piran, T. 1980, ApJ, 235, 224 CrossRefGoogle Scholar
Dovčiak, M., Muleri, F., Goosmann, R. W., Karas, V., & Matt, G. 2008, MNRAS, 391, 32 CrossRefGoogle Scholar
Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 238, 729 Google Scholar
Koyama, K., Maeda, Y., Sonobe, T., et al. 1996, PASJ, 48, 249 Google Scholar
Li, L.-X., Zimmerman, E. R., Narayan, R., & McClintock, J. E. 2005, ApJS, 157, 335 Google Scholar
Marin, F., Muleri, F., Soffitta, P., Karas, V., & Kunneriath, D. 2015, A&A, 576, A19 Google Scholar
Schnittman, J. D. & Krolik, J. H. 2009, ApJ, 701, 1175 CrossRefGoogle Scholar
Sunyaev, R. A., Markevitch, M., & Pavlinsky, M. 1993, ApJ, 407, 606 Google Scholar
Valinia, A., Tatischeff, V., Arnaud, K., Ebisawa, K., & Ramaty, R. 2000, ApJ, 543, 733 Google Scholar
Weisskopf, M. C., Cohen, G. G., Kestenbaum, H. L., et al. 1976, ApJL, 208, L125 Google Scholar