Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T01:44:20.487Z Has data issue: false hasContentIssue false

The wind production from black hole hot accretion flow

Published online by Cambridge University Press:  07 April 2020

De-Fu Bu*
Affiliation:
Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai200030, China email: dfbu@shao.ac.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of low luminosity active galactic nuclei (LLAGNs) and the hard state of black hole X-ray binaries (BHBs) show that the wind exists. Black hole in LLAGNs and hard state of BHBs accretes gas in hot accretion mode. In this paper, we first use magnetohydrodynamic (MHD) simulations of hot accretion flow around a black hole to study the origin of the wind. We find that the wind is driven by the combination of gradients of gas and magnetic pressure and centrifugal forces. Second, we use simulations with focus on the region around Bondi radius to study whether the wind can be generated outside Bondi radius. In the simulation studying hot accretion flow around Bondi radius, in addition to the black hole gravity, we also take into account the gravity of nuclei stars. We find that the wind can not be generated outside Bondi radius. The absence of the wind is due to the change of gravity potential.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abbassi, S., Ghanbari, J., & Ghasemnezhad, M. 2010, MNRAS, 409, 1113CrossRefGoogle Scholar
Bu, D., Yuan, F., & Xie, F. 2009, MNRAS, 392, 325CrossRefGoogle Scholar
Bu, D., Yuan, F., Gan, Z., & Yang, X. 2016a, ApJ, 818, 83CrossRefGoogle Scholar
Bu, D., Yuan, F., Gan, Z., & Yang, X. 2016b, ApJ, 823, 90CrossRefGoogle Scholar
Bu, D., & Mosallanezhad, A. 2018, A&A (arXiv:1805.03378)Google Scholar
Blandford, R., & Begelman, M. C. 1999, MNRAS, 303, L1CrossRefGoogle Scholar
Cao, X. 2016, ApJ, 833, 30CCrossRefGoogle Scholar
Chen, L., Cao, X., & Bai, J. 2012, ApJ, 748, 119CCrossRefGoogle Scholar
Ciotti, L., & Ostriker, J. P. 2001, ApJ, 551, 131CrossRefGoogle Scholar
Ciotti, L., & Ostriker, J. P. 2007, ApJ, 665, 1038CrossRefGoogle Scholar
Gan, Z., Yuan, F., Ostriker, J. P., Ciotti, L, & Novak, G. S., 2014, ApJ, 789, 15010.1088/0004-637X/789/2/150CrossRefGoogle Scholar
Gu, W. 2015, ApJ, 799, 7110.1088/0004-637X/799/1/71CrossRefGoogle Scholar
Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 51110.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Li, S., & Cao, X. 2009, MNRAS, 400, 1734CrossRefGoogle Scholar
Li, S., & Begelman, M. C. 2014, ApJ, 786, 6LCrossRefGoogle Scholar
Narayan, R., & Yi, I. 1994, ApJ, 428, L13CrossRefGoogle Scholar
Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. 2000, ApJ, 539, 79810.1086/309268CrossRefGoogle Scholar
Quataert, E, & Gruzinov, A. 2000, ApJ, 539, 809CrossRefGoogle Scholar
Stone, J. M., Pringle, J. E., & Begelman, M. C. 1999, MNRAS, 310, 100210.1046/j.1365-8711.1999.03024.xCrossRefGoogle Scholar
Xie, F., & Yuan, F., 2008, ApJ, 681, 499CrossRefGoogle Scholar
Yuan, F., Bu, D., & Wu, M. 2012, ApJ, 761, 130CrossRefGoogle Scholar
Yuan, F., Gan, Z., Narayan, R. Sadowski, A., Bu, D., & Bai, X. 2015, ApJ, 804, 101CrossRefGoogle Scholar
Yuan, F., Yoon, D., Li, Y., Gan, Z., Ho, L. C., & Guo, F. 2018, ApJ, 857, 121CrossRefGoogle Scholar