Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T18:49:06.688Z Has data issue: false hasContentIssue false

White dwarf binaries and the gravitational wave foreground

Published online by Cambridge University Press:  07 March 2016

Matthew Benacquista*
Affiliation:
Center for Gravitational Wave Astronomy, University of Texas at Brownsville, One West University Blvd, Brownsville, TX 78520, USA email: matthew.benacquista@utb.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galactic white dwarf binaries will be an abundant source of gravitational waves in the mHz frequency band of space-based detectors such as eLISA. A few thousand to a few tens of thousands of these systems will be individually resolvable by eLISA, depending on the final detector configuration. The remaining tens of millions of close white dwarf binaries will create an unresolvable anisotropic foreground of gravitational waves that will be comparable to the instrument noise of eLISA at frequencies below about a mHz. Both the resolvable binaries and the foreground can be used to better understand this population. Careful choice of the initial orientation of eLISA can mitigate this foreground in searches for other sources.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Amaro Seoane, P., et al. (The eLISA Consortium) 2013, arXiv, 1305.5720Google Scholar
Benacquista, M., Hinojosa, J., Mata, A., & Belczynski, K. 2014, arXiv 1410.1177Google Scholar
Bender, P. L. 1998, Bull. Amer. Astron. Soc., 30, 1326Google Scholar
Brown, W. R., Kilic, M., Allende Prieto, C., & Kenyon, S. J. 2011, ApJ, 723, 1072CrossRefGoogle Scholar
Evans, C. R., Iben, I., & Smarr, L. 1987, ApJ, 323, 129CrossRefGoogle Scholar
Faller, J. E., Bender, P. L., Hall, J. L., & Hils, D., Stebbins, R. T. 1989, Adv. Space Res., 9, 107CrossRefGoogle Scholar
Folkner, W. M., Bender, P. L., & Stebbins, R. T. 1998, Publication 97–16, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.Google Scholar
Hils, D., Bender, P. L., & Webbink, R. F. 1990, ApJ, 360, 75Google Scholar
Jani, K. P., Finn, L. S., & Benacquista, M. J. 2013, arXiv, 1306.3253Google Scholar
Kilic, M., Brown, W. R., Allende Prieto, C., Kenyon, S. J., & Panei, S. J. 2010, ApJ, 716, 122CrossRefGoogle Scholar
Kilic, M., Brown, W. R., Allende Prieto, C., Kenyon, S. J., Heinke, C. O., Agüeros, M. A., & Kleinman, S. J. 2012, ApJ 751, 141Google Scholar
Littenberg, T. B., Larson, S. L., Nelemans, G., & Cornish, N. J. 2013, MNRAS, 429, 2361CrossRefGoogle Scholar
Nelemans, G., Yungelson, L. R., & Portegies Zwart, S. F. 2001, A&A, 375, 890Google Scholar
Nissanke, S., Vallisneri, M., Nelemans, G., & Prince, T. A. 2012, ApJ, 758, 131Google Scholar
Rau, A., Roelofs, G. H. A., Groot, P. J., Marsh, T. R., Nelemans, G, Steeghs, D., Salvato, M., & Kasliwal, M. M. 2010, ApJ, 708, 456Google Scholar
Roelofs, G. H. A., Nelemans, G., & Groot, P. J. 2007, MNRAS 382, 685CrossRefGoogle Scholar
Ruiter, A. J., Belczynski, K., Benacquista, M., Larson, S., & Williams, G. 2010, ApJ, 717, 1006Google Scholar
Stroeer, A., Benacquista, M., & Ceballos, F. 2013, in Proc. IAU Symposium 281: Binary Paths to Type Ia Supernovea Explosions, ed. Di Stefano, R., Orio, M. & Moe, M. (Cambridge University Press), 217Google Scholar
Webbink, R. F. 1984, ApJ, 277, 355Google Scholar
Yu, S. & Jeffery, S. 2013, MNRAS, 429, 1602Google Scholar