No CrossRef data available.
Published online by Cambridge University Press: 01 December 2007
The standard theory of radiation driven winds has provided a useful framework to understand stellar winds arising from massive stars (O stars, Wolf-Rayet stars, and luminous blue variables). However, with new diagnostics, and advances in spectral modeling, deficiencies in our understanding of stellar winds have been thrust to the forefront of our research efforts. Spectroscopic observations and analyses have shown the importance of inhomogeneities in stellar winds, and revealed that there are fundamental discrepancies between predicted and theoretical mass-loss rates. For late O stars, spectroscopic analyses derive mass-loss rates significantly lower than predicted. For all O stars, observed X-ray fluxes are difficult to reproduce using standard shock theory, while observed X-ray profiles indicate lower mass-loss rates, the potential importance of porosity effects, and an origin surprisingly close to the stellar photosphere. In O stars with weak winds, X-rays play a crucial role in determining the ionization balance, and must be taken into account.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.