Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T21:23:45.381Z Has data issue: false hasContentIssue false

What can we expect from precision asteroseismology?

Published online by Cambridge University Press:  18 February 2014

G. Handler*
Affiliation:
Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland email: gerald@camk.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Precision asteroseismology is the determination of accurate stellar parameters from oscillation data. At first successful for pulsating white dwarf stars, it is now applied to more and more types of stars. We give a number of selected examples where precision asteroseismology, but also asteroseismology based on few observables may lead to considerable improvement of stellar astrophysics in the near future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aerts, C., Thoul, A., Daszyńska, J., et al. 2003, Science, 300, 1926Google Scholar
Antoci, V., Handler, G., Campante, T., et al. 2011, Nature, 477, 570Google Scholar
Bedding, T. R., Mosser, B., Huber, D., et al. 2011, Nature, 471, 608Google Scholar
Bonaca, A., Tanner, J. D., Basu, S., et al. 2012, ApJ, 755, L12Google Scholar
Briquet, M., Morel, T., Thoul, A., et al. 2007, MNRAS, 381, 1482CrossRefGoogle Scholar
Córsico, A. H., Althaus, L. G., Miller Bertolami, M. M., González Pérez, J. M., & Kepler, S. O. 2009, ApJ, 701, 1008Google Scholar
Cugier, H. 2012, A&A, 547, A42Google Scholar
Cunha, M. S. 2002, MNRAS, 333, 47Google Scholar
Daszyńska-Daszkiewicz, J. & Walczak, P. 2009, MNRAS, 398, 1961Google Scholar
Daszyńska-Daszkiewicz, J. & Walczak, P. 2010, MNRAS, 403, 496Google Scholar
Deheuvels, S. & Michel, E. 2011, A&A, 535, A91Google Scholar
Kawaler, S. D. 1988, ApJ, 334, 220Google Scholar
Kawaler, S. D. & Bradley, P. A. 1994, ApJ, 427, 415Google Scholar
Kawaler, S. D. & Hostler, S. R. 2005, ApJ, 621, 432Google Scholar
Kawaler, S. D., Sekii, T., & Gough, D. O. 1999, ApJ, 516, 349Google Scholar
Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013, A&A, 549, A74Google Scholar
Metcalfe, T. S., Chaplin, W. J., Appourchaux, T., et al. 2012, ApJ, 748, L10Google Scholar
Miller Bertolami, M. M., Córsico, A. H., Zhang, X., Althaus, L. G., & Jeffery, C. S. 2013, in: Montalbán, J., Noels, A., & Van Grootel, V. (eds.) Ageing Low Mass Stars: From Red Giants to White Dwarfs, EPJ Web of Conferences, Vol. 43, id. 04004Google Scholar
Moravveji, E., Moya, A., & Guinan, E. F. 2012, ApJ, 749, 74Google Scholar
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A&A, 548, A10Google Scholar
Pamyatnykh, A. A., Handler, G., & Dziembowski, W. A. 2004, MNRAS, 350, 1022Google Scholar
Rodríguez-López, C. & MacDonald, J., Moya, A. 2012, MNRAS, 419, L44Google Scholar
Silva Aguirre, V., Basu, S., Brandão, I. M., et al. 2013, ApJ, 769, 141Google Scholar
Sonoi, T. & Shibahashi, H. 2012, MNRAS, 422, 2642Google Scholar
Théado, S., Vauclair, S., Alecian, G., & LeBlanc, F. 2009, ApJ, 704, 1262Google Scholar
Trampedach, R. & Stein, R. F. 2011, ApJ, 731, 78Google Scholar