Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:45:19.345Z Has data issue: false hasContentIssue false

(Un)true deuterium abundance in the Galactic disk

Published online by Cambridge University Press:  23 April 2010

Tijana Prodanović
Affiliation:
Department of Physics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia email: prodanvc@df.uns.ac.rs
Gary Steigman
Affiliation:
Department of Physics and Astronomy, Ohio State University, 191 W. Woodruff Ave., Columbus OH 43210-1117, USA email: steigman@mps.ohio-state.edu
Brian D. Fields
Affiliation:
Department of Astronomy, University of Illinois, 1002 W. Green St., Urbana IL 61801, USA email: bdfields@illinois.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Deuterium has a special place in cosmology, nuclear astrophysics, and galactic chemical evolution, because of its unique property that it is only created in the big bang nucleosynthesis while all other processes result in its net destruction. For this reason, among other things, deuterium abundance measurements in the interstellar medium (ISM) allow us to determine the fraction of interstellar gas that has been cycled through stars, and set constraints and learn about different Galactic chemical evolution (GCE) models. However, recent indications that deuterium might be preferentially depleted onto dust grains complicate our understanding about the meaning of measured ISM deuterium abundances. For this reason, recent estimates by Linsky et al. (2006) have yielded a lower bound to the “true”, undepleted, ISM deuterium abundance that is very close to the primordial abundance, indicating a small deuterium astration factor contrary to the demands of many GCE models. To avoid any prejudice about deuterium dust depletion along different lines of sight that are used to determine the “true” D abundance, we propose a model-independent, statistical Bayesian method to address this issue and determine in a model-independent manner the undepleted ISM D abundance. We find the best estimate for the gas-phase ISM deuterium abundance to be (D/H)ISM ≥ (2.0 ± 0.1) × 10−5. Presented are the results of Prodanović et al. (2009).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Cyburt, R. H., Fields, B. D., & Olive, K. A. 2003, Phys. Lett. B, 567, 227CrossRefGoogle Scholar
Draine, B. T. 2006, Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, 348, 58Google Scholar
Epstein, R. I., Lattimer, J. M., & Schramm, D. N. 1976, Nature, 263, 198CrossRefGoogle Scholar
Hébrard, G., et al. 2002, ApJS, 140, 103CrossRefGoogle Scholar
Hogan, C. J., Olive, K. A., & Scully, S. T. 1997, ApJL, 489, L119CrossRefGoogle Scholar
Hoopes, C. G., Sembach, K. R., Hébrard, G., Moos, H. W., & Knauth, D. C. 2003, ApJ, 586, 1094CrossRefGoogle Scholar
Jenkins, E. B., Tripp, T. M., Woźniak, P. R., Sofia, U. J., & Sonneborn, G. 1999, ApJ, 520, 182CrossRefGoogle Scholar
Jura, M. 1982, Advances in Ultraviolet Astronomy, Kondo, Y., Mead, J., Chapman, R. D., eds., NASA, Washington, p. 54Google Scholar
Linsky, J. L., et al. 2006, ApJ, 647, 1106CrossRefGoogle Scholar
Pettini, M., Zych, B. J., Murphy, M. T., Lewis, A., & Steidel, C. C. 2008, MNRAS, 391, 1499CrossRefGoogle Scholar
Prochaska, J. X., Tripp, T. M., & Howk, J. C. 2005, ApJ, 620, L39CrossRefGoogle Scholar
Prodanović, T. & Fields, B. D. 2003, ApJ, 597, 48CrossRefGoogle Scholar
Prodanović, T. & Fields, B. D. 2008, JCAP, 9, 3CrossRefGoogle Scholar
Prodanović, T., Steigman, G., & Fields, B. D. 2009, submitted to MNRAS, arXiv:0910.4961Google Scholar
Romano, D., Tosi, M., Chiappini, C., & Matteucci, F. 2006, MNRAS, 369, 295CrossRefGoogle Scholar
Sonneborn, G., Tripp, T. M., Ferlet, R., Jenkins, E. B., Sofia, U. J., Vidal-Madjar, A., & Woźniak, P. R. 2000, ApJ, 545, 277CrossRefGoogle Scholar
Spergel, D. N., et al. 2007, ApJS, 170, 377CrossRefGoogle Scholar
Steigman, G. & Tosi, M. 1992, ApJ, 401, 150CrossRefGoogle Scholar
Steigman, G. & Tosi, M. 1995, ApJ, 453, 173CrossRefGoogle Scholar
Steigman, G., Romano, D., & Tosi, M. 2007, MNRAS, 378, 576CrossRefGoogle Scholar
Steigman, G. 2007, Ann. Rev. Nucl. Part. Sci, 57, 463CrossRefGoogle Scholar
Vangioni-Flam, E., Olive, K. A., & Prantzos, N. 1994, ApJ, 427, 618CrossRefGoogle Scholar