Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T17:06:12.882Z Has data issue: false hasContentIssue false

A unified construction of stellar evolution and chemical evolution models for the multiple populations in globular clusters

Published online by Cambridge University Press:  11 March 2020

Sohee Jang
Affiliation:
Center for Galaxy Evolution Research and Department of Astronomy,Yonsei University, Seoul03722, Korea email:sohee.jang@yonsei.ac.kr
Jenny J. Kim
Affiliation:
Center for Galaxy Evolution Research and Department of Astronomy,Yonsei University, Seoul03722, Korea email:sohee.jang@yonsei.ac.kr Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg,Mönchhofstraße 12-14, 69120Heidelberg, Germany
Young-Wook Lee
Affiliation:
Center for Galaxy Evolution Research and Department of Astronomy,Yonsei University, Seoul03722, Korea email:sohee.jang@yonsei.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent investigations of multiple stellar populations in globular clusters (GCs) suggest that the horizontal-branch (HB) morphology and mean period of type ab RR Lyrae variables are mostly sensitive to helium abundance, while the star formation timescale has the greatest effect on our chemical evolution model constructed to reproduce the Na-O anti-correlation of GCs. Therefore, by combining the results from synthetic HB model with those from chemical evolution model, we could put better constraints on star formation history and chemical evolution in GCs with multiple populations. From such efforts made for four GCs, M4, M5, M15, and M80, we find that consistent results can be obtained from these two independent models.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Anderson, J., Sarajedini, A., Bedin, L. R., et al. 2008, AJ, 135, 2055CrossRefGoogle Scholar
Arellano Ferro, A., Ahumada, J. A., Kains, N., et al. 2016, MNRAS, 461, 1032CrossRefGoogle Scholar
Bingham, E. A., Cacciari, C., Dickens, R. J., & Pecci, F. F., 1984, MNRAS, 209, 765CrossRefGoogle Scholar
Buonanno, R., Corsi, C. E., Buzzoni, A., et al. 1994, A&A, 290, 69Google Scholar
Buonanno, R., Corsi, C. E., & Fusi Pecci, F., 1985, A&A, 145, 97Google Scholar
Carretta, E., Bragaglia, A., Gratton, R., & Lucatello, S. 2009a, A&A, 505, 139Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009b, A&A, 505, 117Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2015, A&A, 578, A116Google Scholar
Jang, S., Kim, J. J., & Lee, Y.-W. 2019, submittedGoogle Scholar
Jang, S. & Lee, Y.-W. 2015, ApJS, 218, 31CrossRefGoogle Scholar
Jang, S., Lee, Y.-W., Joo, S.-J., & Na, C. 2014, MNRAS, 443, L15CrossRefGoogle Scholar
Joo, S.-J. & Lee, Y.-W. 2013, ApJ, 762, 36CrossRefGoogle Scholar
Kim, J. J. & Lee, Y.-W. 2018, ApJ, 869, 35CrossRefGoogle Scholar
Lee, Y.-W., Demarque, P., & Zinn, R. 1994, ApJ, 423, 248CrossRefGoogle Scholar
Mochejska, B. J., Kaluzny, J., Thompson, I., et al. 2002, AJ, 124, 1486CrossRefGoogle Scholar
Stetson, P. B., Braga, V. F., Dall’Ora, M., et al. 2014, PASP, 126, 521CrossRefGoogle Scholar
Viaux, N., Catelan, M., Stetson, P. B., et al. 2013, A&A, 558, 12Google Scholar