Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T21:58:08.004Z Has data issue: false hasContentIssue false

Understanding the size growth of massive galaxies through stellar populations

Published online by Cambridge University Press:  17 August 2016

I. Ferreras
Affiliation:
Mullard Space Science Laboratory, University College London, UK
I. Trujillo
Affiliation:
Instituto de Astrofísica de Canarias & Universidad de La Laguna, Spain
E. Mármol-Queraltó
Affiliation:
Institute for Astronomy, Royal Observatory, Edinburgh, UK
P. Pérez-González
Affiliation:
Departamento de Astrofísica, Universidad Complutense de Madrid, Spain email: i.ferreras@ucl.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive early-type galaxies undergo a significant process of evolution with redshift on the stellar mass vs size plane. Furthermore, this trend does not depend on the age of their stellar populations. Therefore, such an evolution should involve processes that do not include a significant amount of star formation, leaving (mostly) dry mergers as the main growth channel. By studying close pairs involving a massive galaxy, one can quantify the role of mergers on the growth of massive galaxies. A recent study based on the SHARDS dataset reveals that minor mergers cannot be the dominant mechanism to explain the bulk of size growth in these systems. Merging is found to provide a constant fractional growth rate of ~10% per Gyr from redshift z=1, corresponding to an overall stellar mass increase of 2× between z=1 and z=0.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000 CrossRefGoogle Scholar
Daddi, E., et al. 2005, ApJ, 626, 680 CrossRefGoogle Scholar
de la Rosa, I. G., et al. 2011, MNRAS, 418, L74 CrossRefGoogle Scholar
Fan, L., et al. 2008, ApJ, 689, L101 CrossRefGoogle Scholar
Ferreras, I., et al. 2009, ApJ, 706, 158 CrossRefGoogle Scholar
Ferreras, I., et al. 2014, MNRAS, 444, 906 CrossRefGoogle Scholar
Jiang, C. Y., Jing, Y. P., Han, J. 2014, ApJ, 790, 7 CrossRefGoogle Scholar
Khochfar, S. & Silk, J. 2009, MNRAS, 397, 506 CrossRefGoogle Scholar
La Barbera, F., et al. 2012, MNRAS, 426, 2300 CrossRefGoogle Scholar
Mármol-Queraltó, E., et al. 2012, MNRAS, 422, 2187 CrossRefGoogle Scholar
Mármol-Queraltó, E., et al. 2013, MNRAS, 429, 792 CrossRefGoogle Scholar
Nair, P. B. & Abraham, R. G. 2010, ApJS, 186, 427 CrossRefGoogle Scholar
Patton, D. R., et al. 2000, ApJ, 536, 153 CrossRefGoogle Scholar
Pérez-González, P. G., et al. 2013, ApJ, 762, 46 CrossRefGoogle Scholar
Ruiz, P., et al. 2014, MNRAS, 442, 347 CrossRefGoogle Scholar
Trujillo, I., et al. 2006, ApJ, 650, 18 CrossRefGoogle Scholar
Trujillo, I., Ferreras, I., & de la Rosa, I. G. 2011, MNRAS, 415, 3903 CrossRefGoogle Scholar
van Dokkum, P. G., et al. 2010, ApJ, 709, 1018 CrossRefGoogle Scholar
van der Wel, A., et al. 2008, ApJ, 688, 48 CrossRefGoogle Scholar