Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T04:02:28.915Z Has data issue: false hasContentIssue false

Understanding Grand Minima in Solar Activity: Confronting Observations with Dynamo Simulations

Published online by Cambridge University Press:  23 December 2024

Chitradeep Saha*
Affiliation:
Center of Excellence in Space Sciences India, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
Dibyendu Nandy
Affiliation:
Center of Excellence in Space Sciences India, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The grand minimum in the Sun’s activity is a distinctive mode characterized by a magnetic lull that almost completely lacks the emergence of sunspots on the solar surface for an extended duration. The factors driving this transition of an otherwise magnetically active star into a quiescent phase, the processes occurring within the solar interior and across the heliosphere during this period, and the mechanisms leading to the eventual resurgence of surface magnetic activity remain enigmatic. However, there have been sustained efforts in the past few decades to unravel these mysteries by employing a combination of observation, reconstruction and simulation of solar magnetic variability. Here, we summarize recent research on the solar grand minimum and highlight some outstanding challenges – both intellectual and practical – that necessitate further investigations.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Herrera, V. M. V., Soon, W., Babynets, N., Muraközy, J., Tlatov, A. G., Nagovitsyn, Y. A., Qiu, S., Švanda, M., & Velasco Herrera, P. A. 2024, Reconstructing daily group sunspot numbers since the maunder minimum with objective inter-calibration algorithms. Advances in Space Research, 73(5), 27882815.CrossRefGoogle Scholar
Augustson, K., Brun, A. S., Miesch, M., & Toomre, J. 2015, Grand minima and equatorward propagation in a cycling stellar convective dynamo. The Astrophysical Journal, 809(2), 149.CrossRefGoogle Scholar
Beer, J., Tobias, S., & Weiss, N. 1998, An active sun throughout the maunder minimum. Solar Physics, 181, 237249.CrossRefGoogle Scholar
Bhowmik, P. & Nandy, D. 2018, Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nature Communications, 9, 5209.CrossRefGoogle ScholarPubMed
Biswas, A., Karak, B. B., Usoskin, I., & Weisshaar, E. 2023, Long-term modulation of solar cycles. Space Science Reviews, 219(3), 19.CrossRefGoogle Scholar
Brandenburg, A. & Spiegel, E. A. 2008, Modeling a maunder minimum. Astronomische Nachrichten: Astronomical Notes, 329(4), 351358.CrossRefGoogle Scholar
Cameron, R. H. & Schüssler, M. 2019, Solar activity: periodicities beyond 11 years are consistent with random forcing. A&A, 625, A28.Google Scholar
Carrasco, V. M. S., Vaquero, J. M., Gallego, M. C., Muñoz-Jaramillo, A., de Toma, G., Galaviz, P., Arlt, R., Pavai, V. S., Sánchez-Bajo, F., Álvarez, J. V., & Gómez, J. M. 2019, Sunspot characteristics at the onset of the maunder minimum based on the observations of hevelius. The Astrophysical Journal, 886(1), 18.CrossRefGoogle Scholar
Charbonneau, P. 2020, Dynamo models of the solar cycle. Living Reviews in Solar Physics, 17(1), 4.CrossRefGoogle Scholar
Charbonneau, P., Blais–Laurier, G., & St-Jean, C. 2004, Intermittency and phase persistence in a babcock-leighton model of the solar cycle. The Astrophysical Journal, 616(2), L183.CrossRefGoogle Scholar
Choudhuri, A. R. & Karak, B. B. 2012, Origin of grand minima in sunspot cycles. Physical Review Letters, 109(17), 171103.CrossRefGoogle ScholarPubMed
Dash, S., Nandy, D., & Usoskin, I. 2023, Long-term forcing of the Sun’s coronal field, open flux, and cosmic ray modulation potential during grand minima, maxima, and regular activity phases by the solar dynamo mechanism. Monthly Notices of the Royal Astronomical Society, 525(4), 48014814.CrossRefGoogle Scholar
Dasi–Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R., & Peñuela, T. 2010, Sunspot group tilt angles and the strength of the solar cycle. A&A, 518, A7.Google Scholar
Eddy, J. A. 1976, The maunder minimum. Science, 192(4245), 11891202.CrossRefGoogle ScholarPubMed
Eddy, J. A. 1983, The maunder minimum: a reappraisal. Solar Physics, 89, 195207.CrossRefGoogle Scholar
Feynman, J. & Ruzmaikin, A. 2011, The sun’s strange behavior: Maunder minimum or gleissberg cycle? Solar Physics, 272(2), 351.CrossRefGoogle Scholar
Hathaway, D. H. 2015, The solar cycle. Living Reviews in Solar Physics, 12(1), 4.CrossRefGoogle ScholarPubMed
Hathaway, D. H., Nandy, D., Wilson, R. M., & Reichmann, E. J. 2003, Evidence that a deep meridional flow sets the sunspot cycle period. The Astrophysical Journal, 589(1), 665.CrossRefGoogle Scholar
Hathaway, D. H. & Rightmire, L. 2010, Variations in the sun’s meridional flow over a solar cycle. Science, 327(5971), 13501352.CrossRefGoogle Scholar
Hayakawa, H., Carrasco, V. M., Aparicio, A. J., Villalba Álvarez, J., & Vaquero, J. M. 2024, An overview of sunspot observations in the early maunder minimum: 1645–1659. Monthly Notices of the Royal Astronomical Society, 528(4), 62806291.CrossRefGoogle Scholar
Hayakawa, H., Lockwood, Mike, Owens, Matthew J., Sôma, Mitsuru, Besser, Bruno P., & van Driel–Gesztelyi, Lidia 2021, Graphical evidence for the solar coronal structure during the maunder minimum: comparative study of the total eclipse drawings in 1706 and 1715. J. Space Weather Space Clim., 11, 1.CrossRefGoogle Scholar
Hazra, S. & Nandy, D. 2019, The origin of parity changes in the solar cycle. Mon. Not. R. Astron. Soc., 489(3), 43294337.CrossRefGoogle Scholar
Hazra, S., Passos, D., & Nandy, D. 2014, A Stochastically Forced Time Delay Solar Dynamo Model: Self-consistent Recovery from a Maunder-like Grand Minimum Necessitates a Mean-field Alpha Effect. Astrophys. J., 789(1), 5.CrossRefGoogle Scholar
Hoyt, D. V. & Schatten, K. H. 1996, How well was the sun observed during the maunder minimum? Solar Physics, 165, 181192.CrossRefGoogle Scholar
Inceoglu, F. 2024, Exploring solar dynamo behavior using an annually resolved carbon-14 compilation during multiple grand solar minima. Scientific Reports, 14(1), 5617.CrossRefGoogle ScholarPubMed
Inceoglu, F., Arlt, R., & Rempel, M. 2017, The nature of grand minima and maxima from fully nonlinear flux transport dynamos. The Astrophysical Journal, 848(2), 93.CrossRefGoogle Scholar
Inceoglu, F., Simoniello, R., Knudsen, M. F., Karoff, C., Olsen, J., Turck–Chiéze, S., & Jacobsen, B. H. 2015, Grand solar minima and maxima deduced from 10be and 14c: magnetic dynamo configuration and polarity reversal. A&A, 577, A20.Google Scholar
Karak, B. B. 2010, Importance of meridional circulation in flux transport dynamo: The possibility of a maunder-like grand minimum. The Astrophysical Journal, 724(2), 1021.CrossRefGoogle Scholar
Karak, B. B. & Miesch, M. 2018, Recovery from maunder-like grand minima in a babcock–leighton solar dynamo model. The Astrophysical Journal Letters, 860(2), L26.CrossRefGoogle Scholar
Küker, M., Arlt, R., & Rüdiger, G. 1999, The maunder minimum as due to magnetic lambda-quenching. Astronomy and Astrophysics, v. 343, p. 977-982 (1999), 343, 977982.Google Scholar
Lekshmi, B., Nandy, D., & Antia, H. M. 2018, Asymmetry in Solar Torsional Oscillation and the Sunspot Cycle. Astrophys. J., 861(2), 121.Google Scholar
Mackay, D. H. 2003, Magnetic flux transport simulations of solar surface magnetic distributions during a grand minimum. Solar Physics, 213, 173193.CrossRefGoogle Scholar
Miyahara, H., Masuda, K., Muraki, Y., Furuzawa, H., Menjo, H., & Nakamura, T. 2004, Cyclicity of solar activity during the maunder minimum deduced from radiocarbon content. Solar Physics, 224, 317322.CrossRefGoogle Scholar
Moss, D., Sokoloff, D., Usoskin, I., & Tutubalin, V. 2008, Solar grand minima and random fluctuations in dynamo parameters. Solar Physics, 250, 221234.CrossRefGoogle Scholar
Muñoz-Jaramillo, A., Nandy, D., & Martens, P. C. H. 2009, Helioseismic Data Inclusion in Solar Dynamo Models. Astrophys. J., 698(1), 461478.CrossRefGoogle Scholar
Muñoz-Jaramillo, A. & Vaquero, J. M. 2019, Visualization of the challenges and limitations of the long-term sunspot number record. Nature Astronomy, 3(3), 205211.CrossRefGoogle Scholar
Nagy, M., Lemerle, A., Labonville, F., Petrovay, K., & Charbonneau, P. 2017, The effect of “rogue” active regions on the solar cycle. Solar Physics, 292, 122.CrossRefGoogle Scholar
Nandy, D. 2021, Progress in Solar Cycle Predictions: Sunspot Cycles 24-25 in Perspective. Sol. Phys., 296(3), 54.CrossRefGoogle Scholar
Nandy, D., Banerjee, D., Bhowmik, P., BRUN, A. S., Cameron, R. H., Gibson, S. E., Hanasoge, S., Harra, L., Hassler, D. M., Jain, R., Jiang, J., Jouve, L., Mackay, D. H., Mahajan, S. S., Mandrini, C. H., Owens, M., Pal, S., Pinto, R. F., Saha, C., Sun, X., Tripathi, D., & Usoskin, I. G. Exploring the Solar Poles: The Last Great Frontier of the Sun. In Bulletin of the American Astronomical Society 2023, volume 55, 287.Google Scholar
Nandy, D., Baruah, Y., Bhowmik, P., Dash, S., Gupta, S., Hazra, S., Lekshmi, B., Pal, S., Pal, S., Roy, S., Saha, C., & Sinha, S. 2023, Causality in heliophysics: Magnetic fields as a bridge between the sun’s interior and the earth’s space environment. Journal of Atmospheric and Solar-Terrestrial Physics, 248, 106081.CrossRefGoogle Scholar
Nandy, D. & Choudhuri, A. R. 2002, Explaining the Latitudinal Distribution of Sunspots with Deep Meridional Flow. Science, 296(5573), 16711673.CrossRefGoogle ScholarPubMed
Nandy, D., Martens, P. C. H., Obridko, V., Dash, S., & Georgieva, K. 2021, Solar evolution and extrema: current state of understanding of long-term solar variability and its planetary impacts. Progress in Earth and Planetary Science, 8(1), 40.CrossRefGoogle Scholar
Nandy, D., Muñoz-Jaramillo, A., & Martens, P. C. H. 2011, The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature, 471(7336), 8082.CrossRefGoogle ScholarPubMed
Olemskoy, S., Choudhuri, A., & Kitchatinov, L. 2013, Fluctuations in the alpha-effect and grand solar minima. Astronomy Reports, 57, 458468.CrossRefGoogle Scholar
Olemskoy, S. & Kitchatinov, L. 2013, Grand minima and north–south asymmetry of solar activity. The Astrophysical Journal, 777(1), 71.CrossRefGoogle Scholar
Ossendrijver, M. 2000, Grand minima in a buoyancy-driven solar dynamo. Astronomy and Astrophysics, v. 359, p. 364-372 (2000), 359, 364372.Google Scholar
Owens, M. J., Lockwood, M., Hawkins, E., Usoskin, I., Jones, G. S., Barnard, L., Schurer, A., & Fasullo, J. 2017, The maunder minimum and the little ice age: an update from recent reconstructions and climate simulations. Journal of Space Weather and Space Climate, 7, A33.CrossRefGoogle Scholar
Owens, M. J., Usoskin, I., & Lockwood, M. 2012, Heliospheric modulation of galactic cosmic rays during grand solar minima: Past and future variations. Geophysical Research Letters, 39(19).CrossRefGoogle Scholar
Pal, S., Bhowmik, P., Mahajan, S. S., & Nandy, D. 2023, Impact of anomalous active regions on the large-scale magnetic field of the sun. The Astrophysical Journal, 953(1), 51.CrossRefGoogle Scholar
Passos, D., Nandy, D., Hazra, S., & Lopes, I. 2014, A solar dynamo model driven by mean-field alpha and Babcock–Leighton sources: fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. Astron. Astrophys., 563, A18.CrossRefGoogle Scholar
Petrovay, K. 2020, Solar cycle prediction. Living Reviews in Solar Physics, 17(1), 2.CrossRefGoogle Scholar
Pevtsov, A. A., Nandy, D., Usoskin, I., Pevtsov, A. A., Corti, C., Lefèvre, L., Owens, M., Li, G., Krivova, N., Saha, C., Perri, B., Brun, A. S., Strugarek, A., Dayeh, M. A., Nagovitsyn, Y. A., & Erdélyi, R. 2023, Long-term solar variability: Iswat s1 cluster review for cospar space weather roadmap. Advances in Space Research,.CrossRefGoogle Scholar
Ribes, J. C. & Nesme–Ribes, E. 1993, The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. Astron. Astrophys., 276, 549.Google Scholar
Richardson, I. G. & Cane, H. V. 2012, Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011). J. Space Weather Space Clim., 2, A02.Google Scholar
Riley, P., Lionello, R., Linker, J. A., Cliver, E., Balogh, A., Beer, J., Charbonneau, P., Crooker, N., DeRosa, M., Lockwood, M., Owens, M., McCracken, K., Usoskin, I., & Koutchmy, S. 2015, Inferring the structure of the solar corona and inner heliosphere during the maunder minimum using global thermodynamic magnetohydrodynamic simulations. The Astrophysical Journal, 802(2), 105.CrossRefGoogle Scholar
Saha, C., Chandra, S., & Nandy, D. 2022, Evidence of persistence of weak magnetic cycles driven by meridional plasma flows during solar grand minima phases. Mon. Not. R. Astron. Soc., 517(1), L36L40.CrossRefGoogle Scholar
Schrijver, C. J., Kauristie, K., Aylward, A. D., Denardini, C. M., Gibson, S. E., Glover, A., Gopalswamy, N., Grande, M., Hapgood, M., Heynderickx, D., Jakowski, N., Kalegaev, V. V., Lapenta, G., Linker, J. A., Liu, S., Mandrini, C. H., Mann, I. R., Nagatsuma, T., Nandy, D., Obara, T., Paul O’Brien, T., Onsager, T., Opgenoorth, H. J., Terkildsen, M., Valladares, C. E., & Vilmer, N. 2015, Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS. Advances in Space Research, 55(12), 27452807.CrossRefGoogle Scholar
Simard, C. & Charbonneau, P. 2020, Grand minima in a spherical non-kinematic α2ω mean-field dynamo model. Journal of Space Weather and Space Climate, 10, 9.CrossRefGoogle Scholar
Solanki, S. K. & Krivova, N. A. 2011, Analyzing solar cycles. Science, 334(6058), 916917.CrossRefGoogle ScholarPubMed
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., & Beer, J. 2004, Unusual activity of the sun during recent decades compared to the previous 11,000 years. Nature, 431(7012), 10841087.CrossRefGoogle Scholar
Steinhilber, F., Beer, J., & Fröhlich, C. 2009, Total solar irradiance during the holocene. Geophysical Research Letters, 36(19).CrossRefGoogle Scholar
Švanda, M., Brun, A. S., Roudier, T., & Jouve, L. 2016, Polar cap magnetic field reversals during solar grand minima: could pores play a role? Astronomy & Astrophysics, 586, A123.CrossRefGoogle Scholar
Tobias, S. M. 1996, Grand minimia in nonlinear dynamos. Astron. Astrophys., 307, L21.Google Scholar
Tripathi, B., Nandy, D., & Banerjee, S. 2021, Stellar mid-life crisis: subcritical magnetic dynamos of solar-like stars and the breakdown of gyrochronology. Mon. Not. R. Astron. Soc., 506(1), L50L54.CrossRefGoogle Scholar
Usoskin, I., Sokoloff, D., & Moss, D. 2009, Grand minima of solar activity and the mean-field dynamo. Solar Physics, 254, 345355.CrossRefGoogle Scholar
Usoskin, I. G. 2023, A history of solar activity over millennia. Living Reviews in Solar Physics, 20(1), 2.CrossRefGoogle Scholar
Usoskin, I. G., Arlt, Rainer, Asvestari, Eleanna, Hawkins, Ed, Käpylä, Maarit, Kovaltsov, Gennady A., Krivova, Natalie, Lockwood, Michael, Mursula, Kalevi, O’Reilly, Jezebel, Owens, Matthew, Scott, Chris J., Sokoloff, Dmitry D., Solanki, Sami K., Soon, Willie, & Vaquero, José M. 2015, The maunder minimum (1645–1715) was indeed a grand minimum: A reassessment of multiple datasets. A&A, 581, A95.Google Scholar
Usoskin, I. G., Solanki, S. K., Krivova, N., Hofer, B., Kovaltsov, G. A., Wacker, L., Brehm, N., & Kromer, B. 2021,a VizieR Online Data Catalog: 1000-year sunspot series (Usoskin+, 2021). VizieR Online Data Catalog, J/A+A/649/A141.Google Scholar
Usoskin, I. G., Solanki, S. K., & Kovaltsov, G. A. 2007, Grand minima and maxima of solar activity: new observational constraints. A&A, 471(1), 301309.Google Scholar
Usoskin, I. G., Solanki, S. K., Krivova, N. A., Hofer, B., Kovaltsov, G. A., Wacker, L., Brehm, N., & Kromer, B. 2021,b Solar cyclic activity over the last millennium reconstructed from annual 14c data. A&A, 649b, A141.Google Scholar
Vaquero, J. M., Nogales, J. M., & Sánchez-Bajo, F. 2015, Sunspot latitudes during the maunder minimum: A machine-readable catalogue from previous studies. Advances in Space Research, 55(6), 15461552.CrossRefGoogle Scholar
Wang, Y., Chen, S., Xu, K., Yan, L., Yue, X., He, F., & Wei, Y. 2021, Ancient auroral records compiled from korean historical books. Journal of Geophysical Research: Space Physics, 126(1), e2020JA028763. e2020JA028763 2020JA028763.Google Scholar
Wang, Y.-M. & Sheeley, N. Jr 2003, Modeling the sun’s large-scale magnetic field during the maunder minimum. The Astrophysical Journal, 591(2), 1248.CrossRefGoogle Scholar
Wilmot–Smith, A. L., Martens, P. C. H., Nandy, D., Priest, E. R., & Tobias, S. M. 2005, Low-order stellar dynamo models. Mon. Not. R. Astron. Soc., 363(4), 11671172.CrossRefGoogle Scholar
Wilmot–Smith, A. L., Nandy, D., Hornig, G., & Martens, P. C. H. 2006, A Time Delay Model for Solar and Stellar Dynamos. Astrophys. J., 652(1), 696708.CrossRefGoogle Scholar
Yan, L., He, F., Yue, X., Wei, Y., Wang, Y., Chen, S., Fan, K., Tian, H., He, J., Zong, Q., & Xia, L. 2023, The 8-year solar cycle during the maunder minimum. AGU Advances, 4(5), e2023AV000964. e2023AV000964 2023AV000964.CrossRefGoogle Scholar
Yeates, A. R., Nandy, D., & Mackay, D. H. 2008, Exploring the Physical Basis of Solar Cycle Predictions: Flux Transport Dynamics and Persistence of Memory in Advection- versus Diffusion-dominated Solar Convection Zones. Astrophys. J., 673(1), 544556.CrossRefGoogle Scholar
Zolotova, N. V. & Ponyavin, D. I. 2014, Is the new grand minimum in progress? Journal of Geophysical Research: Space Physics, 119(5), 32813285.CrossRefGoogle Scholar
Zolotova, N. V. & Ponyavin, D. I. 2015, The maunder minimum is not as grand as it seemed to be. The Astrophysical Journal, 800(1), 42.CrossRefGoogle Scholar