Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T14:20:34.581Z Has data issue: false hasContentIssue false

Towards Improving the Prospects for Coordinated Gravitational-Wave and Electromagnetic Observations

Published online by Cambridge University Press:  20 April 2012

Ilya Mandel
Affiliation:
School of Physics & Astronomy, University of Birmingham, Edgbaston, B15 2TT, UK email: imandel@star.sr.bham.ac.uk
Luke Z. Kelley
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
Enrico Ramirez-Ruiz
Affiliation:
Dept. of Astronomy & Astrophysics, University of California, Santa Cruz, CA 95064, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss two approaches to searches for gravitational-wave (GW) and electromagnetic (EM) counterparts of binary neutron-star mergers. The first approach relies on triggering archival searches of GW detector data based on detections of EM transients. Quantitative estimates of the improvement to GW detector reach due to the increased confidence in the presence and parameters of a signal from a binary merger gained from the EM transient suggest utilizing other transients in addition to short gamma-ray bursts. The second approach involves following up GW candidates with targeted EM observations. We argue for the use of slower but optimal parameter-estimation techniques and for a more sophisticated use of astrophysical prior information, including galaxy catalogues to find preferred follow-up locations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abadie, J., et al. , 2010a, Classical and Quantum Gravity, 27, 173001CrossRefGoogle Scholar
Abadie, J., et al. , 2010b, ApJ, 715, 1453CrossRefGoogle Scholar
Abadie, J., et al. , 2011, ArXiv e-prints, 1109.3498Google Scholar
Berger, E. 2010, ApJ, 722, 1946CrossRefGoogle Scholar
Bloom, J. S., et al. , 2009, ArXiv e-prints, 0902.1527Google Scholar
Cannon, K., et al. , 2011, ArXiv e-prints, 1107.2665Google Scholar
Fairhurst, S. 2009, New Journal of Physics, 11, 123006CrossRefGoogle Scholar
Finn, L. S., Mohanty, S. D., & Romano, J. D. 1999, Phys. Rev. D, 60, 121101CrossRefGoogle Scholar
Harry, G. M., the LIGO Scientific Collaboration. 2010, Class. Quant. Grav., 27, 084006CrossRefGoogle Scholar
Harry, I. W. & Fairhurst, S. 2011, Phys. Rev. D, 83, 084002CrossRefGoogle Scholar
Kelley, L. Z., et al. , 2010, ApJ (Letters), 725, L91CrossRefGoogle Scholar
Lee, W. H. & Ramirez-Ruiz, E. 2007, New Journal of Physics, 9, 17CrossRefGoogle Scholar
Mandel, I. & O'Shaughnessy, R. 2010, Class. Quant. Grav., 27, 114007CrossRefGoogle Scholar
Metzger, B. D. & Berger, E. 2011, ArXiv e-prints, 1108.6056Google Scholar
Nuttall, L. K. & Sutton, P. J. 2010, Phys. Rev. D, 82, 102002CrossRefGoogle Scholar
O'Shaughnessy, R., Kalogera, V., & Belczynski, K. 2010, ApJ, 716, 615CrossRefGoogle Scholar
van der Sluys, M. V., et al. , 2008, ApJ, 688, L61CrossRefGoogle Scholar
van Eerten, H. J. & MacFadyen, A. I. 2011, ApJ 733, L37CrossRefGoogle Scholar
Virgo Collaboration. 2009, Technical Report VIR-0027A-09Google Scholar