Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T15:58:59.707Z Has data issue: false hasContentIssue false

Torun methanol maser monitoring program

Published online by Cambridge University Press:  07 February 2024

P. Wolak*
Affiliation:
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100Torun, Poland.
M. Szymczak
Affiliation:
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100Torun, Poland.
A. Bartkiewicz
Affiliation:
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100Torun, Poland.
M. Durjasz
Affiliation:
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100Torun, Poland.
A. Kobak
Affiliation:
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100Torun, Poland.
M. Olech
Affiliation:
Space Radio-Diagnostic Research Center, Faculty of Geoengineering, University of Warmia and Mazury, Oczapowskiego 2, PL-10-719 Olsztyn, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since 2009, the Torun 32 m radio telescope has been used to monitor a sample of ∼140 sources of the 6.7 GHz methanol maser emission. In 2022, the sample was extended to about 250 targets. Approximately three-quarters show variability greater than 10% on timescales of a few weeks to several years. The most significant results are detecting a few flare events and discovering about a dozen periodic variables with periods ranging from a month to a few years. Here, we present the preliminary analysis of the properties of periodic masers.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Araya, E. D., Hofner, P., Goss, W. M., et al. 2010, ApJ, 717, L133 10.1088/2041-8205/717/2/L133CrossRefGoogle Scholar
Durjasz, M., Szymczak, M., Olech, M., Bartkiewicz, A. 2022, A&A, 663, A123 Google Scholar
Inayoshi, K., Sugiyama, K., Hosokawa, T., Motogi, K., & Tanaka, K. E. I. 2013, ApJ, 769, L20 10.1088/2041-8205/769/2/L20CrossRefGoogle Scholar
Morgan, J., van der Walt, D. J., Chibueze, J. O., & Zhang, Q. 2021, MNRAS, 507, 1138 10.1093/mnras/stab2185CrossRefGoogle Scholar
Olech, M., Szymczak, M., Wolak, P., Sarniak, R., & Bartkiewicz, A. 2019, MNRAS, 486, 1236 10.1093/mnras/stz926CrossRefGoogle Scholar
Olech, M., Durjasz, M., Szymczak, M., Bartkiewicz. 2022, A&A, 661, A114 Google Scholar
Parfenov, S. Y. & Sobolev, A. M. 2014, MNRAS, 444, 620 10.1093/mnras/stu1481CrossRefGoogle Scholar
Szymczak, M., Olech, M., Sarniak, R., Wolak, P., Bartkiewicz, A. 2018, MNRAS, 474, 219 10.1093/mnras/stx2693CrossRefGoogle Scholar
Tanabe, Y., Yonekura, Y., MacLeod, G C. 2023, PASJ, 75, 2 10.1093/pasj/psad002CrossRefGoogle Scholar
van der Walt, D. J. 2011, AJ, 141, 152 10.1088/0004-6256/141/5/152CrossRefGoogle Scholar