Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T06:01:52.788Z Has data issue: false hasContentIssue false

Topological Features in the Emerging Solar Magnetic Flux

Published online by Cambridge University Press:  23 December 2024

Ilan Roth*
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA 94720
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formation of highly structured, spatially localized complex structures during solar flux emergence facilitates adaptation of topological methods, extending the research of emerging macroscopic MHD fluxes into knots, links and braids. Combining mathematical considerations, remote images and in situ satellite observations at solar vicinity, we construct new characteristics of those braided/knotted magnetic structures, applying Braid and Knot Theory to physical configurations, deducing their topological invariants, constraining the evolution and stability while delineating the relaxation path to magnetized equilibria.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Adams, C. C. 2004,. The knot book.Google Scholar
Alexander, J. W. 1928, Transactions of the American Mathematical Society, 30(2), 275306.CrossRefGoogle Scholar
Artin, E. 1947, Theory of braids. Ann. of Math, 4, 101126.CrossRefGoogle Scholar
Berger, M. A. & Asgari–Targhi, M. 2009, The Astrophysical Journal, 705(1), 347.CrossRefGoogle Scholar
Che, H., Drake, J. F., & Swisdak, M. 2011, Nature, 474(7350), 184187.CrossRefGoogle Scholar
Cheung, M. C. M. & Isobe, H. 2014, Flux emergence (theory). Living Rev. Sol. Phys., 11, 3.Google Scholar
Cirtain, J. W., Golub, L., Winebarger, A., De Pontieu, B., Kobayashi, K., Moore, R., Walsh, R. W., Korreck, K., Weber, M., McCauley, P., et al. 2013, Nature, 493(7433), 501503.CrossRefGoogle Scholar
Drake, J. F., Swisdak, M., Che, H., & Shay, M. 2006, Nature, 443(7111), 553556.CrossRefGoogle Scholar
Fan, Y. 2009, Magnetic fields in the solar convection zone. Living Rev. Sol. Phys., 6, 4.CrossRefGoogle Scholar
Fisk, L. A. 1996, Journal of Geophysical Research: Space Physics, 101(A7), 1554715553.CrossRefGoogle Scholar
Fisk, L. A., Schwadron, N., & Zurbuchen, T. 1999, Journal of Geophysical Research: Space Physics, 104(A9), 1976519772.CrossRefGoogle Scholar
Leka, K., Canfield, R., McClymont, A., & van Driel–Gesztelyi, L. 1996, The Astrophysical Journal, 462, 547.CrossRefGoogle Scholar
MacTaggart, D. & Prior, C. In Journal of Physics: Conference Series 2021, volume 1730, 012013.Google Scholar
Markov, A. A. 1935, Recueil Math. Moscou., 1, 7378.Google Scholar
Thalmann, J. K., Tiwari, S. K., & Wiegelmann, T. 2014, The Astrophysical Journal, 780(1), 102.CrossRefGoogle Scholar